[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 5 ] =
{4,4}_12,6.
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {2, 3}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170,
171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159},
{156, 157}, {154, 155}, {152, 153}, {148, 149}, {146, 147}, {144, 145}, {142,
143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131},
{128, 129}, {126, 127}, {124, 125}, {122, 123}, {118, 119}, {116, 117}, {62,
63}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44,
45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7},
{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23},
{24, 25}, {26, 27}, {28, 29}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73},
{74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89},
{92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {1, 2}, {177, 178},
{173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149,
150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126},
{121, 122}, {117, 118}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41,
42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25,
26}, {29, 30}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89,
90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {3, 4},
{179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131,
132}, {123, 124}, {115, 116}, {59, 60}, {51, 52}, {43, 44}, {35, 36}, {11, 12},
{19, 20}, {27, 28}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107,
108}, {7, 8}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {39,
40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {1, 31}, {129, 159}, {128, 158},
{33, 63}, {32, 62}, {64, 94}, {65, 95}, {96, 126}, {97, 127}, {1, 30}, {175,
176}, {143, 144}, {47, 48}, {15, 16}, {79, 80}, {111, 112}, {2, 32}, {150, 180},
{147, 177}, {146, 176}, {143, 173}, {142, 172}, {139, 169}, {138, 168}, {135,
165}, {134, 164}, {131, 161}, {130, 160}, {3, 33}, {6, 36}, {7, 37}, {10, 40},
{11, 41}, {14, 44}, {15, 45}, {18, 48}, {19, 49}, {22, 52}, {23, 53}, {26, 56},
{27, 57}, {30, 60}, {31, 61}, {66, 96}, {67, 97}, {70, 100}, {71, 101}, {74,
104}, {75, 105}, {78, 108}, {79, 109}, {82, 112}, {83, 113}, {86, 116}, {87,
117}, {90, 120}, {91, 121}, {94, 124}, {95, 125}, {31, 60}, {151, 180}, {91,
120}, {4, 34}, {149, 179}, {148, 178}, {141, 171}, {140, 170}, {133, 163}, {132,
162}, {5, 35}, {12, 42}, {13, 43}, {20, 50}, {21, 51}, {28, 58}, {29, 59}, {68,
98}, {69, 99}, {76, 106}, {77, 107}, {84, 114}, {85, 115}, {92, 122}, {93, 123},
{8, 38}, {137, 167}, {136, 166}, {9, 39}, {24, 54}, {25, 55}, {72, 102}, {73,
103}, {88, 118}, {89, 119}, {16, 46}, {145, 175}, {144, 174}, {17, 47}, {80,
110}, {81, 111}, {31, 32}, {159, 160}, {95, 96}, {34, 64}, {59, 89}, {58, 88},
{55, 85}, {54, 84}, {51, 81}, {50, 80}, {47, 77}, {46, 76}, {43, 73}, {42, 72},
{39, 69}, {38, 68}, {35, 65}, {62, 92}, {63, 93}, {36, 66}, {61, 91}, {60, 90},
{53, 83}, {52, 82}, {45, 75}, {44, 74}, {37, 67}, {61, 90}, {40, 70}, {57, 87},
{56, 86}, {41, 71}, {48, 78}, {49, 79}, {63, 64}, {19, 151}, {24, 156}, {25,
157}, {26, 158}, {27, 159}, {20, 152}, {21, 153}, {22, 154}, {23, 155}, {1,
163}, {4, 166}, {5, 167}, {8, 170}, {9, 171}, {12, 174}, {13, 175}, {16, 178},
{17, 179}, {2, 164}, {3, 165}, {10, 172}, {11, 173}, {18, 180}, {6, 168}, {7,
169}, {28, 160}, {29, 161}, {30, 162}, {14, 176}, {15, 177}, {98, 128}, {127,
157}, {126, 156}, {123, 153}, {122, 152}, {119, 149}, {118, 148}, {115, 145},
{99, 129}, {102, 132}, {103, 133}, {106, 136}, {107, 137}, {110, 140}, {111,
141}, {114, 144}, {100, 130}, {125, 155}, {124, 154}, {117, 147}, {116, 146},
{101, 131}, {108, 138}, {109, 139}, {104, 134}, {121, 151}, {120, 150}, {105,
135}, {121, 150}, {112, 142}, {113, 143}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30)(31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150)(151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 163, 30, 31)(3, 133, 29, 61)(4, 103, 28, 91)(5, 73, 27, 121)(6, 43, 26,
151)(7, 13, 25, 19)(8, 175, 24, 49)(9, 145, 23, 79)(10, 115, 22, 109)(11, 85,
21, 139)(12, 55, 20, 169)(14, 157, 18, 37)(15, 127, 17, 67)(16, 97)(32, 164,
162, 60)(33, 134, 161, 90)(34, 104, 160, 120)(35, 74, 159, 150)(36, 44, 158,
180)(38, 176, 156, 48)(39, 146, 155, 78)(40, 116, 154, 108)(41, 86, 153,
138)(42, 56, 152, 168)(45, 128, 179, 66)(46, 98, 178, 96)(47, 68, 177, 126)(50,
170, 174, 54)(51, 140, 173, 84)(52, 110, 172, 114)(53, 80, 171, 144)(57, 122,
167, 72)(58, 92, 166, 102)(59, 62, 165, 132)(63, 135, 131, 89)(64, 105, 130,
119)(65, 75, 129, 149)(69, 147, 125, 77)(70, 117, 124, 107)(71, 87, 123,
137)(76, 99, 148, 95)(81, 141, 143, 83)(82, 111, 142, 113)(88, 93, 136, 101)(94,
106, 100, 118)
C4[ 180, 5 ]
180
-1 2 30 31 163
-2 1 3 32 164
-3 33 165 2 4
-4 34 166 3 5
-5 35 167 4 6
-6 36 168 5 7
-7 37 169 6 8
-8 38 170 7 9
-9 39 171 8 10
-10 11 40 172 9
-11 12 41 173 10
-12 11 13 42 174
-13 12 14 43 175
-14 44 176 13 15
-15 45 177 14 16
-16 46 178 15 17
-17 47 179 16 18
-18 48 180 17 19
-19 49 18 151 20
-20 50 19 152 21
-21 22 51 20 153
-22 154 23 52 21
-23 22 155 24 53
-24 23 156 25 54
-25 55 24 157 26
-26 56 25 158 27
-27 57 26 159 28
-28 58 27 160 29
-29 59 28 161 30
-30 1 60 29 162
-31 1 60 61 32
-32 33 2 62 31
-33 34 3 63 32
-34 33 35 4 64
-35 34 36 5 65
-36 66 35 37 6
-37 67 36 38 7
-38 68 37 39 8
-39 69 38 40 9
-40 70 39 41 10
-41 11 71 40 42
-42 12 72 41 43
-43 44 13 73 42
-44 45 14 74 43
-45 44 46 15 75
-46 45 47 16 76
-47 77 46 48 17
-48 78 47 49 18
-49 79 48 50 19
-50 80 49 51 20
-51 81 50 52 21
-52 22 82 51 53
-53 23 83 52 54
-54 55 24 84 53
-55 56 25 85 54
-56 55 57 26 86
-57 56 58 27 87
-58 88 57 59 28
-59 89 58 60 29
-60 90 59 30 31
-61 90 91 62 31
-62 92 61 63 32
-63 33 93 62 64
-64 34 94 63 65
-65 66 35 95 64
-66 67 36 96 65
-67 66 68 37 97
-68 67 69 38 98
-69 99 68 70 39
-70 100 69 71 40
-71 101 70 72 41
-72 102 71 73 42
-73 103 72 74 43
-74 44 104 73 75
-75 45 105 74 76
-76 77 46 106 75
-77 78 47 107 76
-78 77 79 48 108
-79 78 80 49 109
-80 110 79 81 50
-81 111 80 82 51
-82 112 81 83 52
-83 113 82 84 53
-84 114 83 85 54
-85 55 115 84 86
-86 56 116 85 87
-87 88 57 117 86
-88 89 58 118 87
-89 88 90 59 119
-90 89 60 61 120
-91 121 92 61 120
-92 122 91 93 62
-93 123 92 94 63
-94 124 93 95 64
-95 125 94 96 65
-96 66 126 95 97
-97 67 127 96 98
-98 99 68 128 97
-99 100 69 129 98
-100 99 101 70 130
-101 100 102 71 131
-102 132 101 103 72
-103 133 102 104 73
-104 134 103 105 74
-105 135 104 106 75
-106 136 105 107 76
-107 77 137 106 108
-108 78 138 107 109
-109 110 79 139 108
-110 111 80 140 109
-111 110 112 81 141
-112 111 113 82 142
-113 143 112 114 83
-114 144 113 115 84
-115 145 114 116 85
-116 146 115 117 86
-117 147 116 118 87
-118 88 148 117 119
-119 89 149 118 120
-120 90 91 150 119
-121 122 91 150 151
-122 121 123 92 152
-123 122 124 93 153
-124 154 123 125 94
-125 155 124 126 95
-126 156 125 127 96
-127 157 126 128 97
-128 158 127 129 98
-129 99 159 128 130
-130 100 160 129 131
-131 132 101 161 130
-132 133 102 162 131
-133 132 134 103 163
-134 133 135 104 164
-135 165 134 136 105
-136 166 135 137 106
-137 167 136 138 107
-138 168 137 139 108
-139 169 138 140 109
-140 110 170 139 141
-141 111 171 140 142
-142 143 112 172 141
-143 144 113 173 142
-144 143 145 114 174
-145 144 146 115 175
-146 176 145 147 116
-147 177 146 148 117
-148 178 147 149 118
-149 179 148 150 119
-150 121 180 149 120
-151 121 180 19 152
-152 122 151 20 153
-153 154 123 152 21
-154 22 155 124 153
-155 154 23 156 125
-156 155 24 157 126
-157 156 25 158 127
-158 157 26 159 128
-159 158 27 160 129
-160 159 28 161 130
-161 160 29 162 131
-162 132 161 30 163
-163 1 133 162 164
-164 165 2 134 163
-165 166 3 135 164
-166 165 167 4 136
-167 166 168 5 137
-168 167 169 6 138
-169 168 170 7 139
-170 169 171 8 140
-171 170 172 9 141
-172 171 173 10 142
-173 11 143 172 174
-174 12 144 173 175
-175 176 13 145 174
-176 177 14 146 175
-177 176 178 15 147
-178 177 179 16 148
-179 178 180 17 149
-180 179 18 150 151
0