[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 6 ] =
{4,4}_<14,4>.
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {2, 3}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170,
171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159},
{156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144,
145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133},
{130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118,
119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107},
{104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {50,
51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34,
35}, {32, 33}, {30, 31}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {52, 53},
{54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69},
{70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85},
{86, 87}, {88, 89}, {1, 2}, {177, 178}, {173, 174}, {169, 170}, {165, 166},
{161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137,
138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114},
{109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {49, 50}, {45,
46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21,
22}, {25, 26}, {29, 30}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73,
74}, {77, 78}, {81, 82}, {85, 86}, {3, 4}, {179, 180}, {171, 172}, {163, 164},
{155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {107,
108}, {99, 100}, {91, 92}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28},
{51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {167, 168}, {151,
152}, {135, 136}, {119, 120}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71,
72}, {87, 88}, {15, 16}, {175, 176}, {143, 144}, {111, 112}, {47, 48}, {79, 80},
{64, 102}, {89, 127}, {88, 126}, {65, 103}, {72, 110}, {73, 111}, {80, 118},
{81, 119}, {66, 104}, {67, 105}, {70, 108}, {71, 109}, {82, 120}, {83, 121},
{86, 124}, {87, 125}, {68, 106}, {69, 107}, {84, 122}, {85, 123}, {74, 112},
{75, 113}, {78, 116}, {79, 117}, {76, 114}, {77, 115}, {31, 32}, {159, 160},
{95, 96}, {1, 91}, {37, 127}, {36, 126}, {33, 123}, {32, 122}, {4, 94}, {5, 95},
{58, 96}, {59, 97}, {62, 100}, {63, 101}, {1, 90}, {2, 92}, {35, 125}, {34,
124}, {3, 93}, {60, 98}, {61, 99}, {6, 96}, {31, 121}, {30, 120}, {7, 97}, {14,
104}, {15, 105}, {22, 112}, {23, 113}, {56, 94}, {57, 95}, {8, 98}, {9, 99},
{12, 102}, {13, 103}, {24, 114}, {25, 115}, {28, 118}, {29, 119}, {54, 92}, {55,
93}, {10, 100}, {11, 101}, {26, 116}, {27, 117}, {53, 91}, {16, 106}, {17, 107},
{20, 110}, {21, 111}, {18, 108}, {19, 109}, {63, 64}, {1, 129}, {49, 177}, {48,
176}, {47, 175}, {46, 174}, {45, 173}, {44, 172}, {43, 171}, {42, 170}, {41,
169}, {40, 168}, {39, 167}, {38, 166}, {37, 165}, {36, 164}, {35, 163}, {34,
162}, {33, 161}, {32, 160}, {31, 159}, {30, 158}, {2, 130}, {3, 131}, {4, 132},
{5, 133}, {6, 134}, {7, 135}, {8, 136}, {9, 137}, {10, 138}, {11, 139}, {12,
140}, {13, 141}, {14, 142}, {15, 143}, {16, 144}, {17, 145}, {18, 146}, {19,
147}, {20, 148}, {21, 149}, {22, 150}, {23, 151}, {24, 152}, {25, 153}, {26,
154}, {27, 155}, {28, 156}, {29, 157}, {50, 178}, {51, 179}, {52, 180}, {38,
128}, {47, 137}, {46, 136}, {39, 129}, {54, 144}, {55, 145}, {62, 152}, {63,
153}, {40, 130}, {45, 135}, {44, 134}, {41, 131}, {56, 146}, {57, 147}, {60,
150}, {61, 151}, {42, 132}, {43, 133}, {58, 148}, {59, 149}, {48, 138}, {49,
139}, {52, 142}, {53, 143}, {50, 140}, {51, 141}, {64, 154}, {90, 128}, {65,
155}, {68, 158}, {69, 159}, {66, 156}, {67, 157}, {70, 160}, {71, 161}, {78,
168}, {79, 169}, {86, 176}, {87, 177}, {72, 162}, {89, 179}, {88, 178}, {73,
163}, {76, 166}, {77, 167}, {74, 164}, {90, 180}, {75, 165}, {91, 180}, {80,
170}, {81, 171}, {84, 174}, {85, 175}, {82, 172}, {83, 173}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 90)(3, 89)(4, 88)(5, 87)(6, 86)(7, 85)(8, 84)(9, 83)(10, 82)(11, 81)(12,
80)(13, 79)(14, 78)(15, 77)(16, 76)(17, 75)(18, 74)(19, 73)(20, 72)(21, 71)(22,
70)(23, 69)(24, 68)(25, 67)(26, 66)(27, 65)(28, 64)(29, 63)(30, 62)(31, 61)(32,
60)(33, 59)(34, 58)(35, 57)(36, 56)(37, 55)(38, 54)(39, 53)(40, 52)(41, 51)(42,
50)(43, 49)(44, 48)(45, 47)(91, 129)(92, 128)(93, 127)(94, 126)(95, 125)(96,
124)(97, 123)(98, 122)(99, 121)(100, 120)(101, 119)(102, 118)(103, 117)(104,
116)(105, 115)(106, 114)(107, 113)(108, 112)(109, 111)(130, 180)(131, 179)(132,
178)(133, 177)(134, 176)(135, 175)(136, 174)(137, 173)(138, 172)(139, 171)(140,
170)(141, 169)(142, 168)(143, 167)(144, 166)(145, 165)(146, 164)(147, 163)(148,
162)(149, 161)(150, 160)(151, 159)(152, 158)(153, 157)(154, 156) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 129)(3, 39)(4, 167)(5, 77)(6, 115)(7, 25)(8, 153)(9, 63)(10, 101)(12,
139)(13, 49)(14, 177)(15, 87)(16, 125)(17, 35)(18, 163)(19, 73)(20, 111)(22,
149)(23, 59)(24, 97)(26, 135)(27, 45)(28, 173)(29, 83)(30, 121)(32, 159)(33,
69)(34, 107)(36, 145)(37, 55)(38, 93)(40, 131)(42, 169)(43, 79)(44, 117)(46,
155)(47, 65)(48, 103)(50, 141)(52, 179)(53, 89)(54, 127)(56, 165)(57, 75)(58,
113)(60, 151)(62, 99)(64, 137)(66, 175)(67, 85)(68, 123)(70, 161)(72, 109)(74,
147)(76, 95)(78, 133)(80, 171)(82, 119)(84, 157)(86, 105)(88, 143)(90, 91)(92,
128)(94, 166)(96, 114)(98, 152)(102, 138)(104, 176)(106, 124)(108, 162)(112,
148)(116, 134)(118, 172)(122, 158)(126, 144)(132, 168)(136, 154)(142, 178)(146,
164)(156, 174)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)
C4[ 180, 6 ]
180
-1 2 90 91 129
-2 1 3 92 130
-3 2 4 93 131
-4 132 3 5 94
-5 133 4 6 95
-6 134 5 7 96
-7 135 6 8 97
-8 136 7 9 98
-9 99 137 8 10
-10 11 100 138 9
-11 12 101 139 10
-12 11 13 102 140
-13 12 14 103 141
-14 13 15 104 142
-15 143 14 16 105
-16 144 15 17 106
-17 145 16 18 107
-18 146 17 19 108
-19 147 18 20 109
-20 110 148 19 21
-21 22 111 149 20
-22 23 112 150 21
-23 22 24 113 151
-24 23 25 114 152
-25 24 26 115 153
-26 154 25 27 116
-27 155 26 28 117
-28 156 27 29 118
-29 157 28 30 119
-30 158 29 31 120
-31 121 159 30 32
-32 33 122 160 31
-33 34 123 161 32
-34 33 35 124 162
-35 34 36 125 163
-36 35 37 126 164
-37 165 36 38 127
-38 166 37 39 128
-39 167 38 40 129
-40 168 39 41 130
-41 169 40 42 131
-42 132 170 41 43
-43 44 133 171 42
-44 45 134 172 43
-45 44 46 135 173
-46 45 47 136 174
-47 46 48 137 175
-48 176 47 49 138
-49 177 48 50 139
-50 178 49 51 140
-51 179 50 52 141
-52 180 51 53 142
-53 143 91 52 54
-54 55 144 92 53
-55 56 145 93 54
-56 55 57 146 94
-57 56 58 147 95
-58 57 59 148 96
-59 58 60 149 97
-60 59 61 150 98
-61 99 60 62 151
-62 100 61 63 152
-63 101 62 64 153
-64 154 102 63 65
-65 66 155 103 64
-66 67 156 104 65
-67 66 68 157 105
-68 67 69 158 106
-69 68 70 159 107
-70 69 71 160 108
-71 70 72 161 109
-72 110 71 73 162
-73 111 72 74 163
-74 112 73 75 164
-75 165 113 74 76
-76 77 166 114 75
-77 78 167 115 76
-78 77 79 168 116
-79 78 80 169 117
-80 79 81 170 118
-81 80 82 171 119
-82 81 83 172 120
-83 121 82 84 173
-84 122 83 85 174
-85 123 84 86 175
-86 176 124 85 87
-87 88 177 125 86
-88 89 178 126 87
-89 88 90 179 127
-90 1 89 180 128
-91 1 92 180 53
-92 2 91 93 54
-93 55 3 92 94
-94 56 4 93 95
-95 57 5 94 96
-96 58 6 95 97
-97 59 7 96 98
-98 99 60 8 97
-99 100 61 9 98
-100 99 101 62 10
-101 11 100 102 63
-102 12 101 103 64
-103 13 102 104 65
-104 66 14 103 105
-105 67 15 104 106
-106 68 16 105 107
-107 69 17 106 108
-108 70 18 107 109
-109 110 71 19 108
-110 111 72 20 109
-111 110 112 73 21
-112 22 111 113 74
-113 23 112 114 75
-114 24 113 115 76
-115 77 25 114 116
-116 78 26 115 117
-117 79 27 116 118
-118 80 28 117 119
-119 81 29 118 120
-120 121 82 30 119
-121 122 83 31 120
-122 121 123 84 32
-123 33 122 124 85
-124 34 123 125 86
-125 35 124 126 87
-126 88 36 125 127
-127 89 37 126 128
-128 90 38 127 129
-129 1 39 128 130
-130 2 40 129 131
-131 132 3 41 130
-132 133 4 42 131
-133 132 134 5 43
-134 44 133 135 6
-135 45 134 136 7
-136 46 135 137 8
-137 47 136 138 9
-138 48 137 139 10
-139 11 49 138 140
-140 12 50 139 141
-141 13 51 140 142
-142 143 14 52 141
-143 144 15 53 142
-144 143 145 16 54
-145 55 144 146 17
-146 56 145 147 18
-147 57 146 148 19
-148 58 147 149 20
-149 59 148 150 21
-150 22 60 149 151
-151 23 61 150 152
-152 24 62 151 153
-153 154 25 63 152
-154 155 26 64 153
-155 154 156 27 65
-156 66 155 157 28
-157 67 156 158 29
-158 68 157 159 30
-159 69 158 160 31
-160 70 159 161 32
-161 33 71 160 162
-162 34 72 161 163
-163 35 73 162 164
-164 165 36 74 163
-165 166 37 75 164
-166 165 167 38 76
-167 77 166 168 39
-168 78 167 169 40
-169 79 168 170 41
-170 80 169 171 42
-171 81 170 172 43
-172 44 82 171 173
-173 45 83 172 174
-174 46 84 173 175
-175 176 47 85 174
-176 177 48 86 175
-177 176 178 49 87
-178 88 177 179 50
-179 89 178 180 51
-180 90 91 179 52
0