[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 7 ] =
{4,4}_[15,6].
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {2, 3}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170,
171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159},
{156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144,
145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133},
{130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {118, 119}, {116,
117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105},
{54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41},
{38, 39}, {36, 37}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16,
17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32,
33}, {34, 35}, {56, 57}, {58, 59}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70,
71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86,
87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101},
{102, 103}, {1, 2}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162},
{157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133,
134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110},
{105, 106}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {57, 58}, {61, 62},
{65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94},
{97, 98}, {101, 102}, {3, 4}, {179, 180}, {171, 172}, {163, 164}, {155, 156},
{147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {51,
52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75,
76}, {83, 84}, {91, 92}, {99, 100}, {7, 8}, {167, 168}, {151, 152}, {135, 136},
{119, 120}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {103, 104}, {15,
16}, {175, 176}, {143, 144}, {111, 112}, {47, 48}, {79, 80}, {1, 61}, {2, 62},
{3, 63}, {64, 124}, {65, 125}, {66, 126}, {67, 127}, {1, 60}, {31, 32}, {159,
160}, {95, 96}, {4, 64}, {53, 113}, {52, 112}, {47, 107}, {46, 106}, {45, 105},
{44, 104}, {39, 99}, {38, 98}, {37, 97}, {36, 96}, {5, 65}, {6, 66}, {7, 67},
{12, 72}, {13, 73}, {14, 74}, {15, 75}, {20, 80}, {21, 81}, {22, 82}, {23, 83},
{28, 88}, {29, 89}, {30, 90}, {31, 91}, {54, 114}, {55, 115}, {60, 120}, {61,
121}, {62, 122}, {63, 123}, {61, 120}, {8, 68}, {43, 103}, {42, 102}, {41, 101},
{40, 100}, {9, 69}, {10, 70}, {11, 71}, {24, 84}, {25, 85}, {26, 86}, {27, 87},
{56, 116}, {57, 117}, {58, 118}, {59, 119}, {16, 76}, {51, 111}, {50, 110}, {49,
109}, {48, 108}, {17, 77}, {18, 78}, {19, 79}, {32, 125}, {34, 127}, {33, 126},
{31, 124}, {28, 121}, {30, 123}, {29, 122}, {32, 92}, {35, 95}, {34, 94}, {33,
93}, {63, 64}, {2, 155}, {4, 157}, {6, 159}, {1, 154}, {5, 158}, {3, 156}, {35,
128}, {51, 144}, {47, 140}, {43, 136}, {39, 132}, {55, 148}, {59, 152}, {36,
129}, {52, 145}, {46, 139}, {44, 137}, {38, 131}, {54, 147}, {60, 153}, {7,
160}, {53, 146}, {45, 138}, {37, 130}, {15, 168}, {23, 176}, {8, 161}, {10,
163}, {12, 165}, {14, 167}, {24, 177}, {26, 179}, {9, 162}, {13, 166}, {25,
178}, {40, 133}, {42, 135}, {56, 149}, {58, 151}, {11, 164}, {41, 134}, {27,
180}, {57, 150}, {16, 169}, {18, 171}, {20, 173}, {22, 175}, {17, 170}, {21,
174}, {48, 141}, {50, 143}, {19, 172}, {49, 142}, {68, 128}, {119, 179}, {118,
178}, {117, 177}, {116, 176}, {111, 171}, {110, 170}, {109, 169}, {108, 168},
{69, 129}, {70, 130}, {71, 131}, {76, 136}, {77, 137}, {78, 138}, {79, 139},
{84, 144}, {85, 145}, {86, 146}, {87, 147}, {92, 152}, {93, 153}, {94, 154},
{95, 155}, {100, 160}, {101, 161}, {102, 162}, {103, 163}, {72, 132}, {120,
180}, {107, 167}, {106, 166}, {105, 165}, {104, 164}, {73, 133}, {74, 134}, {75,
135}, {88, 148}, {89, 149}, {90, 150}, {91, 151}, {121, 180}, {80, 140}, {115,
175}, {114, 174}, {113, 173}, {112, 172}, {81, 141}, {82, 142}, {83, 143}, {96,
156}, {97, 157}, {98, 158}, {99, 159}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12,
50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22,
40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 154)(62,
153)(63, 152)(64, 151)(65, 150)(66, 149)(67, 148)(68, 147)(69, 146)(70, 145)(71,
144)(72, 143)(73, 142)(74, 141)(75, 140)(76, 139)(77, 138)(78, 137)(79, 136)(80,
135)(81, 134)(82, 133)(83, 132)(84, 131)(85, 130)(86, 129)(87, 128)(88, 127)(89,
126)(90, 125)(91, 124)(92, 123)(93, 122)(94, 121)(95, 180)(96, 179)(97, 178)(98,
177)(99, 176)(100, 175)(101, 174)(102, 173)(103, 172)(104, 171)(105, 170)(106,
169)(107, 168)(108, 167)(109, 166)(110, 165)(111, 164)(112, 163)(113, 162)(114,
161)(115, 160)(116, 159)(117, 158)(118, 157)(119, 156)(120, 155) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 61)(3, 121)(4, 28)(5, 88)(6, 148)(7, 55)(8, 115)(9, 175)(10, 22)(11,
82)(12, 142)(13, 49)(14, 109)(15, 169)(17, 76)(18, 136)(19, 43)(20, 103)(21,
163)(23, 70)(24, 130)(25, 37)(26, 97)(27, 157)(29, 64)(30, 124)(32, 91)(33,
151)(34, 58)(35, 118)(36, 178)(38, 85)(39, 145)(40, 52)(41, 112)(42, 172)(44,
79)(45, 139)(47, 106)(48, 166)(50, 73)(51, 133)(53, 100)(54, 160)(56, 67)(57,
127)(59, 94)(60, 154)(63, 122)(65, 89)(66, 149)(68, 116)(69, 176)(71, 83)(72,
143)(74, 110)(75, 170)(78, 137)(80, 104)(81, 164)(84, 131)(86, 98)(87, 158)(90,
125)(93, 152)(95, 119)(96, 179)(99, 146)(101, 113)(102, 173)(105, 140)(108,
167)(111, 134)(114, 161)(117, 128)(120, 155)(126, 150)(129, 177)(132, 144)(135,
171)(141, 165)(147, 159)(156, 180)(162, 174)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)
C4[ 180, 7 ]
180
-1 154 2 60 61
-2 1 155 3 62
-3 2 156 4 63
-4 3 157 5 64
-5 4 158 6 65
-6 66 5 159 7
-7 67 6 160 8
-8 68 7 161 9
-9 69 8 162 10
-10 11 70 9 163
-11 12 71 10 164
-12 11 165 13 72
-13 12 166 14 73
-14 13 167 15 74
-15 14 168 16 75
-16 15 169 17 76
-17 77 16 170 18
-18 78 17 171 19
-19 79 18 172 20
-20 80 19 173 21
-21 22 81 20 174
-22 23 82 21 175
-23 22 176 24 83
-24 23 177 25 84
-25 24 178 26 85
-26 25 179 27 86
-27 26 180 28 87
-28 88 121 27 29
-29 89 122 28 30
-30 90 123 29 31
-31 91 124 30 32
-32 33 92 125 31
-33 34 93 126 32
-34 33 35 94 127
-35 34 36 95 128
-36 35 37 96 129
-37 36 38 97 130
-38 37 39 98 131
-39 99 132 38 40
-40 100 133 39 41
-41 101 134 40 42
-42 102 135 41 43
-43 44 103 136 42
-44 45 104 137 43
-45 44 46 105 138
-46 45 47 106 139
-47 46 48 107 140
-48 47 49 108 141
-49 48 50 109 142
-50 110 143 49 51
-51 111 144 50 52
-52 112 145 51 53
-53 113 146 52 54
-54 55 114 147 53
-55 56 115 148 54
-56 55 57 116 149
-57 56 58 117 150
-58 57 59 118 151
-59 58 60 119 152
-60 1 59 120 153
-61 121 1 62 120
-62 122 2 61 63
-63 123 3 62 64
-64 124 4 63 65
-65 66 125 5 64
-66 67 126 6 65
-67 66 68 127 7
-68 67 69 128 8
-69 68 70 129 9
-70 69 71 130 10
-71 11 70 72 131
-72 132 12 71 73
-73 133 13 72 74
-74 134 14 73 75
-75 135 15 74 76
-76 77 136 16 75
-77 78 137 17 76
-78 77 79 138 18
-79 78 80 139 19
-80 79 81 140 20
-81 80 82 141 21
-82 22 81 83 142
-83 143 23 82 84
-84 144 24 83 85
-85 145 25 84 86
-86 146 26 85 87
-87 88 147 27 86
-88 89 148 28 87
-89 88 90 149 29
-90 89 91 150 30
-91 90 92 151 31
-92 91 93 152 32
-93 33 92 94 153
-94 154 34 93 95
-95 155 35 94 96
-96 156 36 95 97
-97 157 37 96 98
-98 99 158 38 97
-99 100 159 39 98
-100 99 101 160 40
-101 100 102 161 41
-102 101 103 162 42
-103 102 104 163 43
-104 44 103 105 164
-105 165 45 104 106
-106 166 46 105 107
-107 167 47 106 108
-108 168 48 107 109
-109 110 169 49 108
-110 111 170 50 109
-111 110 112 171 51
-112 111 113 172 52
-113 112 114 173 53
-114 113 115 174 54
-115 55 114 116 175
-116 176 56 115 117
-117 177 57 116 118
-118 178 58 117 119
-119 179 59 118 120
-120 180 60 61 119
-121 122 180 28 61
-122 121 123 29 62
-123 122 124 30 63
-124 123 125 31 64
-125 124 126 32 65
-126 33 66 125 127
-127 34 67 126 128
-128 35 68 127 129
-129 36 69 128 130
-130 37 70 129 131
-131 132 38 71 130
-132 133 39 72 131
-133 132 134 40 73
-134 133 135 41 74
-135 134 136 42 75
-136 135 137 43 76
-137 44 77 136 138
-138 45 78 137 139
-139 46 79 138 140
-140 47 80 139 141
-141 48 81 140 142
-142 143 49 82 141
-143 144 50 83 142
-144 143 145 51 84
-145 144 146 52 85
-146 145 147 53 86
-147 146 148 54 87
-148 55 88 147 149
-149 56 89 148 150
-150 57 90 149 151
-151 58 91 150 152
-152 59 92 151 153
-153 154 60 93 152
-154 1 155 94 153
-155 154 2 156 95
-156 155 3 157 96
-157 156 4 158 97
-158 157 5 159 98
-159 99 158 6 160
-160 100 159 7 161
-161 101 160 8 162
-162 102 161 9 163
-163 103 162 10 164
-164 11 165 104 163
-165 12 166 105 164
-166 165 13 167 106
-167 166 14 168 107
-168 167 15 169 108
-169 168 16 170 109
-170 110 169 17 171
-171 111 170 18 172
-172 112 171 19 173
-173 113 172 20 174
-174 114 173 21 175
-175 22 176 115 174
-176 23 177 116 175
-177 176 24 178 117
-178 177 25 179 118
-179 178 26 180 119
-180 121 179 27 120
0