[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 13 ] =
PS(4,45;8).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {45, 46}, {83, 91}, {84, 92}, {85, 93}, {86, 94}, {87, 95}, {128,
147}, {132, 151}, {129, 148}, {131, 150}, {130, 149}, {128, 154}, {133, 159},
{132, 158}, {129, 155}, {133, 152}, {135, 154}, {130, 156}, {131, 157}, {134,
153}, {64, 101}, {66, 103}, {72, 109}, {74, 111}, {80, 117}, {82, 119}, {88,
125}, {90, 127}, {134, 160}, {135, 161}, {65, 102}, {73, 110}, {81, 118}, {89,
126}, {67, 104}, {71, 108}, {83, 120}, {87, 124}, {2, 46}, {3, 47}, {16, 60},
{17, 61}, {18, 62}, {19, 63}, {68, 105}, {70, 107}, {84, 121}, {86, 123}, {1,
47}, {16, 62}, {17, 63}, {69, 106}, {85, 122}, {2, 48}, {3, 49}, {6, 52}, {7,
53}, {10, 56}, {11, 57}, {14, 60}, {15, 61}, {4, 48}, {5, 49}, {6, 50}, {7, 51},
{12, 56}, {13, 57}, {14, 58}, {15, 59}, {64, 117}, {66, 119}, {72, 125}, {74,
127}, {4, 50}, {5, 51}, {12, 58}, {13, 59}, {65, 118}, {73, 126}, {88, 96}, {89,
97}, {90, 98}, {67, 120}, {71, 124}, {75, 112}, {79, 116}, {8, 52}, {9, 53},
{10, 54}, {11, 55}, {68, 121}, {70, 123}, {76, 113}, {78, 115}, {8, 54}, {9,
55}, {69, 122}, {77, 114}, {47, 100}, {59, 112}, {63, 116}, {46, 99}, {60, 113},
{62, 115}, {61, 114}, {18, 64}, {31, 77}, {30, 76}, {27, 73}, {26, 72}, {19,
65}, {22, 68}, {23, 69}, {20, 64}, {31, 75}, {30, 74}, {29, 73}, {28, 72}, {21,
65}, {22, 66}, {23, 67}, {48, 101}, {50, 103}, {56, 109}, {58, 111}, {20, 66},
{29, 75}, {28, 74}, {21, 67}, {49, 102}, {57, 110}, {1, 90}, {51, 104}, {55,
108}, {59, 96}, {63, 100}, {24, 68}, {27, 71}, {26, 70}, {25, 69}, {52, 105},
{54, 107}, {60, 97}, {62, 99}, {24, 70}, {25, 71}, {53, 106}, {61, 98}, {56,
93}, {58, 95}, {57, 94}, {55, 92}, {32, 76}, {35, 79}, {34, 78}, {33, 77}, {54,
91}, {32, 78}, {33, 79}, {34, 80}, {43, 89}, {42, 88}, {39, 85}, {38, 84}, {35,
81}, {36, 80}, {44, 88}, {39, 83}, {38, 82}, {37, 81}, {45, 89}, {36, 82}, {44,
90}, {37, 83}, {40, 84}, {43, 87}, {42, 86}, {41, 85}, {40, 86}, {41, 87}, {26,
144}, {43, 161}, {42, 160}, {31, 149}, {30, 148}, {27, 145}, {28, 146}, {29,
147}, {44, 162}, {45, 163}, {29, 136}, {31, 138}, {24, 142}, {25, 143}, {30,
137}, {1, 153}, {2, 154}, {3, 155}, {4, 156}, {5, 157}, {6, 158}, {7, 159}, {18,
136}, {19, 137}, {22, 140}, {23, 141}, {20, 138}, {21, 139}, {4, 167}, {8, 171},
{12, 175}, {16, 179}, {1, 164}, {3, 166}, {9, 172}, {11, 174}, {17, 180}, {2,
165}, {10, 173}, {8, 160}, {28, 180}, {27, 179}, {26, 178}, {9, 161}, {10, 162},
{11, 163}, {12, 164}, {13, 165}, {14, 166}, {15, 167}, {24, 176}, {25, 177},
{32, 139}, {36, 143}, {5, 168}, {35, 142}, {33, 140}, {7, 170}, {46, 128}, {47,
129}, {6, 169}, {34, 141}, {48, 130}, {49, 131}, {52, 134}, {53, 135}, {37,
144}, {39, 146}, {45, 152}, {32, 150}, {41, 159}, {40, 158}, {33, 151}, {50,
132}, {51, 133}, {38, 145}, {16, 168}, {17, 169}, {18, 170}, {19, 171}, {20,
172}, {21, 173}, {22, 174}, {23, 175}, {34, 152}, {39, 157}, {38, 156}, {35,
153}, {40, 147}, {44, 151}, {13, 176}, {43, 150}, {41, 148}, {15, 178}, {36,
154}, {37, 155}, {14, 177}, {42, 149}, {91, 155}, {116, 180}, {115, 179}, {114,
178}, {92, 156}, {93, 157}, {94, 158}, {95, 159}, {96, 160}, {97, 161}, {98,
162}, {99, 163}, {100, 164}, {101, 165}, {102, 166}, {103, 167}, {104, 168},
{105, 169}, {106, 170}, {107, 171}, {108, 172}, {109, 173}, {110, 174}, {111,
175}, {112, 176}, {113, 177}, {96, 167}, {104, 175}, {97, 168}, {99, 170}, {101,
172}, {103, 174}, {75, 128}, {79, 132}, {98, 169}, {102, 173}, {76, 129}, {78,
131}, {77, 130}, {100, 171}, {80, 133}, {82, 135}, {81, 134}, {105, 176}, {107,
178}, {109, 180}, {106, 177}, {108, 179}, {110, 136}, {127, 153}, {126, 152},
{119, 145}, {118, 144}, {111, 137}, {120, 146}, {125, 151}, {124, 150}, {121,
147}, {125, 144}, {127, 146}, {122, 148}, {123, 149}, {126, 145}, {120, 139},
{124, 143}, {121, 140}, {123, 142}, {122, 141}, {91, 162}, {93, 164}, {95, 166},
{112, 138}, {117, 143}, {116, 142}, {113, 139}, {94, 165}, {117, 136}, {119,
138}, {114, 140}, {115, 141}, {92, 163}, {118, 137} }>;
(II) A more general form is to represent the graph as the orbit of {45, 46}
under the group generated by the following permutations:
a: (2, 45)(3, 44)(4, 43)(5, 42)(6, 41)(7, 40)(8, 39)(9, 38)(10, 37)(11, 36)(12,
35)(13, 34)(14, 33)(15, 32)(16, 31)(17, 30)(18, 29)(19, 28)(20, 27)(21, 26)(22,
25)(23, 24)(47, 90)(48, 89)(49, 88)(50, 87)(51, 86)(52, 85)(53, 84)(54, 83)(55,
82)(56, 81)(57, 80)(58, 79)(59, 78)(60, 77)(61, 76)(62, 75)(63, 74)(64, 73)(65,
72)(66, 71)(67, 70)(68, 69)(92, 135)(93, 134)(94, 133)(95, 132)(96, 131)(97,
130)(98, 129)(99, 128)(100, 127)(101, 126)(102, 125)(103, 124)(104, 123)(105,
122)(106, 121)(107, 120)(108, 119)(109, 118)(110, 117)(111, 116)(112, 115)(113,
114)(137, 180)(138, 179)(139, 178)(140, 177)(141, 176)(142, 175)(143, 174)(144,
173)(145, 172)(146, 171)(147, 170)(148, 169)(149, 168)(150, 167)(151, 166)(152,
165)(153, 164)(154, 163)(155, 162)(156, 161)(157, 160)(158, 159) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45)(46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135)(136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)
c: (1, 46, 91, 136)(2, 54, 110, 153)(3, 62, 129, 170)(4, 70, 103, 142)(5, 78,
122, 159)(6, 86, 96, 176)(7, 49, 115, 148)(8, 57, 134, 165)(9, 65, 108, 137)(10,
73, 127, 154)(11, 81, 101, 171)(12, 89, 120, 143)(13, 52, 94, 160)(14, 60, 113,
177)(15, 68, 132, 149)(16, 76, 106, 166)(17, 84, 125, 138)(18, 47, 99, 155)(19,
55, 118, 172)(20, 63, 92, 144)(21, 71, 111, 161)(22, 79, 130, 178)(23, 87, 104,
150)(24, 50, 123, 167)(25, 58, 97, 139)(26, 66, 116, 156)(27, 74, 135, 173)(28,
82, 109, 145)(29, 90, 128, 162)(30, 53, 102, 179)(31, 61, 121, 151)(32, 69, 95,
168)(33, 77, 114, 140)(34, 85, 133, 157)(35, 48, 107, 174)(36, 56, 126, 146)(37,
64, 100, 163)(38, 72, 119, 180)(39, 80, 93, 152)(40, 88, 112, 169)(41, 51, 131,
141)(42, 59, 105, 158)(43, 67, 124, 175)(44, 75, 98, 147)(45, 83, 117, 164)
C4[ 180, 13 ]
180
-1 90 47 153 164
-2 154 165 46 48
-3 155 166 47 49
-4 156 167 48 50
-5 157 168 49 51
-6 158 169 50 52
-7 159 170 51 53
-8 160 171 52 54
-9 55 161 172 53
-10 56 162 173 54
-11 55 57 163 174
-12 56 58 164 175
-13 165 176 57 59
-14 166 177 58 60
-15 167 178 59 61
-16 168 179 60 62
-17 169 180 61 63
-18 136 170 62 64
-19 137 171 63 65
-20 66 138 172 64
-21 67 139 173 65
-22 66 68 140 174
-23 67 69 141 175
-24 176 68 70 142
-25 143 177 69 71
-26 144 178 70 72
-27 145 179 71 73
-28 146 180 72 74
-29 136 147 73 75
-30 137 148 74 76
-31 77 138 149 75
-32 78 139 150 76
-33 77 79 140 151
-34 78 80 141 152
-35 79 81 142 153
-36 143 154 80 82
-37 144 155 81 83
-38 145 156 82 84
-39 146 157 83 85
-40 147 158 84 86
-41 148 159 85 87
-42 88 149 160 86
-43 89 150 161 87
-44 88 90 151 162
-45 89 46 152 163
-46 99 45 2 128
-47 1 100 3 129
-48 2 101 4 130
-49 3 102 5 131
-50 132 4 103 6
-51 133 5 104 7
-52 134 6 105 8
-53 135 7 106 9
-54 91 8 107 10
-55 11 92 9 108
-56 12 93 10 109
-57 11 110 13 94
-58 12 111 14 95
-59 13 112 15 96
-60 14 113 16 97
-61 15 114 17 98
-62 99 16 115 18
-63 100 17 116 19
-64 101 18 117 20
-65 102 19 118 21
-66 22 103 20 119
-67 23 104 21 120
-68 22 121 24 105
-69 23 122 25 106
-70 24 123 26 107
-71 25 124 27 108
-72 26 125 28 109
-73 110 27 126 29
-74 111 28 127 30
-75 112 29 128 31
-76 113 30 129 32
-77 33 114 31 130
-78 34 115 32 131
-79 33 132 35 116
-80 34 133 36 117
-81 35 134 37 118
-82 36 135 38 119
-83 91 37 39 120
-84 121 92 38 40
-85 122 93 39 41
-86 123 94 40 42
-87 124 95 41 43
-88 44 125 96 42
-89 45 126 97 43
-90 44 1 127 98
-91 155 83 162 54
-92 55 156 84 163
-93 56 157 85 164
-94 165 57 158 86
-95 166 58 159 87
-96 88 167 59 160
-97 89 168 60 161
-98 90 169 61 162
-99 46 170 62 163
-100 47 171 63 164
-101 165 48 172 64
-102 166 49 173 65
-103 66 167 50 174
-104 67 168 51 175
-105 176 68 169 52
-106 177 69 170 53
-107 178 70 171 54
-108 55 179 71 172
-109 56 180 72 173
-110 57 136 73 174
-111 58 137 74 175
-112 176 59 138 75
-113 177 60 139 76
-114 77 178 61 140
-115 78 179 62 141
-116 79 180 63 142
-117 143 80 136 64
-118 144 81 137 65
-119 66 145 82 138
-120 67 146 83 139
-121 68 147 84 140
-122 69 148 85 141
-123 70 149 86 142
-124 143 71 150 87
-125 88 144 72 151
-126 89 145 73 152
-127 90 146 74 153
-128 154 46 147 75
-129 155 47 148 76
-130 77 156 48 149
-131 78 157 49 150
-132 79 158 50 151
-133 80 159 51 152
-134 81 160 52 153
-135 154 82 161 53
-136 110 18 29 117
-137 111 19 30 118
-138 112 20 31 119
-139 113 21 32 120
-140 22 33 121 114
-141 23 34 122 115
-142 24 35 123 116
-143 25 36 124 117
-144 26 37 125 118
-145 27 38 126 119
-146 28 39 127 120
-147 121 29 40 128
-148 122 30 41 129
-149 123 31 42 130
-150 124 32 43 131
-151 33 44 132 125
-152 34 45 133 126
-153 1 35 134 127
-154 2 36 135 128
-155 3 91 37 129
-156 4 92 38 130
-157 5 93 39 131
-158 132 6 94 40
-159 133 7 95 41
-160 134 8 96 42
-161 135 9 97 43
-162 44 91 10 98
-163 11 99 45 92
-164 1 12 100 93
-165 2 13 101 94
-166 3 14 102 95
-167 4 15 103 96
-168 5 16 104 97
-169 6 17 105 98
-170 99 7 18 106
-171 100 8 19 107
-172 101 9 20 108
-173 102 10 21 109
-174 11 22 110 103
-175 12 23 111 104
-176 13 24 112 105
-177 14 25 113 106
-178 15 26 114 107
-179 16 27 115 108
-180 17 28 116 109
0