[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 16 ] =
MSZ(12,15,5,2).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {2, 3}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170,
171}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {154, 155},
{152, 153}, {150, 151}, {148, 149}, {146, 147}, {142, 143}, {140, 141}, {138,
139}, {74, 75}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {58, 59}, {56,
57}, {54, 55}, {52, 53}, {50, 51}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {76, 77}, {78, 79},
{80, 81}, {82, 83}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {98, 99},
{100, 101}, {102, 103}, {104, 105}, {106, 107}, {110, 111}, {112, 113}, {114,
115}, {116, 117}, {118, 119}, {122, 123}, {124, 125}, {126, 127}, {128, 129},
{130, 131}, {134, 135}, {136, 137}, {1, 2}, {177, 178}, {173, 174}, {169, 170},
{165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141,
142}, {137, 138}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54},
{49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{29, 30}, {33, 34}, {37, 38}, {41, 42}, {77, 78}, {81, 82}, {85, 86}, {89, 90},
{93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118},
{121, 122}, {125, 126}, {129, 130}, {133, 134}, {8, 13}, {168, 173}, {152, 157},
{144, 149}, {72, 77}, {56, 61}, {48, 53}, {24, 29}, {32, 37}, {80, 85}, {96,
101}, {104, 109}, {120, 125}, {128, 133}, {3, 4}, {179, 180}, {171, 172}, {163,
164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {11,
12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99,
100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {1, 12}, {164, 169}, {145,
156}, {68, 73}, {49, 60}, {20, 25}, {36, 41}, {84, 89}, {97, 108}, {116, 121},
{132, 137}, {7, 8}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39,
40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {4, 21}, {160, 177}, {136,
153}, {64, 81}, {40, 57}, {76, 93}, {100, 117}, {9, 26}, {141, 158}, {69, 86},
{45, 62}, {33, 50}, {105, 122}, {129, 146}, {13, 24}, {37, 48}, {109, 120},
{133, 144}, {12, 17}, {169, 180}, {140, 145}, {73, 84}, {44, 49}, {108, 113},
{1, 30}, {175, 176}, {143, 144}, {65, 94}, {47, 48}, {15, 16}, {79, 80}, {97,
126}, {111, 112}, {5, 34}, {149, 178}, {13, 42}, {29, 58}, {77, 106}, {85, 114},
{133, 162}, {22, 63}, {70, 111}, {82, 123}, {130, 171}, {25, 54}, {137, 166},
{73, 102}, {89, 118}, {16, 33}, {148, 165}, {28, 45}, {88, 105}, {21, 38}, {153,
170}, {81, 98}, {93, 110}, {2, 55}, {157, 168}, {74, 127}, {66, 119}, {85, 96},
{10, 51}, {6, 59}, {156, 161}, {25, 36}, {92, 97}, {17, 46}, {159, 160}, {145,
174}, {31, 32}, {95, 96}, {14, 67}, {62, 115}, {30, 83}, {32, 111}, {48, 127},
{18, 71}, {50, 103}, {26, 79}, {12, 91}, {36, 115}, {44, 123}, {58, 99}, {4,
95}, {54, 107}, {8, 87}, {35, 124}, {23, 112}, {61, 90}, {53, 82}, {37, 66},
{34, 75}, {3, 104}, {7, 108}, {19, 120}, {28, 119}, {11, 100}, {41, 70}, {52,
69}, {57, 74}, {42, 95}, {61, 72}, {20, 99}, {46, 87}, {15, 116}, {16, 107},
{38, 91}, {60, 65}, {24, 103}, {63, 64}, {49, 78}, {7, 134}, {47, 174}, {11,
138}, {19, 146}, {23, 150}, {31, 158}, {35, 162}, {43, 170}, {3, 142}, {15,
154}, {39, 178}, {6, 157}, {63, 164}, {27, 128}, {31, 132}, {9, 172}, {2, 165},
{47, 136}, {10, 161}, {55, 156}, {51, 152}, {39, 140}, {40, 131}, {59, 148}, {1,
176}, {5, 180}, {60, 139}, {18, 169}, {52, 143}, {22, 173}, {43, 144}, {27,
166}, {14, 177}, {56, 135}, {78, 131}, {110, 163}, {126, 179}, {80, 159}, {96,
175}, {90, 143}, {114, 167}, {122, 175}, {68, 147}, {94, 135}, {64, 155}, {86,
139}, {72, 151}, {71, 160}, {101, 130}, {109, 138}, {125, 154}, {118, 159}, {67,
168}, {76, 167}, {88, 179}, {121, 150}, {112, 129}, {124, 141}, {117, 134}, {98,
151}, {84, 163}, {92, 171}, {106, 147}, {75, 176}, {79, 180}, {102, 155}, {121,
132}, {83, 172}, {113, 142}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(13, 26, 51, 100, 17, 30, 55, 104, 21,
34, 59, 108)(14, 27, 52, 101, 18, 31, 56, 105, 22, 35, 60, 97)(15, 28, 53, 102,
19, 32, 57, 106, 23, 36, 49, 98)(16, 29, 54, 103, 20, 33, 58, 107, 24, 25, 50,
99)(37, 74, 147, 112, 41, 78, 151, 116, 45, 82, 155, 120)(38, 75, 148, 113, 42,
79, 152, 117, 46, 83, 156, 109)(39, 76, 149, 114, 43, 80, 153, 118, 47, 84, 145,
110)(40, 77, 150, 115, 44, 81, 154, 119, 48, 73, 146, 111)(61, 122, 63, 124, 65,
126, 67, 128, 69, 130, 71, 132)(62, 123, 64, 125, 66, 127, 68, 129, 70, 131, 72,
121)(85, 170, 159, 136, 89, 174, 163, 140, 93, 178, 167, 144)(86, 171, 160, 137,
90, 175, 164, 141, 94, 179, 168, 133)(87, 172, 161, 138, 91, 176, 165, 142, 95,
180, 157, 134)(88, 173, 162, 139, 92, 177, 166, 143, 96, 169, 158, 135) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 30)(3, 83)(4, 172)(5, 9)(6, 26)(7, 79)(8, 180)(10, 34)(11, 75)(12,
176)(13, 169)(14, 18)(15, 71)(16, 160)(17, 177)(19, 67)(20, 168)(21, 173)(23,
63)(24, 164)(25, 157)(27, 59)(28, 148)(29, 165)(31, 55)(32, 156)(33, 161)(35,
51)(36, 152)(37, 145)(38, 174)(39, 47)(40, 136)(41, 153)(42, 170)(44, 144)(45,
149)(46, 178)(48, 140)(49, 133)(50, 162)(52, 124)(53, 141)(54, 158)(56, 132)(57,
137)(58, 166)(60, 128)(61, 121)(62, 150)(64, 112)(65, 129)(66, 146)(68, 120)(69,
125)(70, 154)(72, 116)(73, 109)(74, 138)(76, 100)(77, 117)(78, 134)(80, 108)(81,
113)(82, 142)(84, 104)(85, 97)(86, 126)(87, 179)(89, 105)(90, 122)(91, 175)(92,
96)(93, 101)(94, 130)(95, 171)(98, 114)(99, 167)(102, 110)(103, 163)(106,
118)(107, 159)(111, 155)(115, 151)(119, 147)(123, 143)(127, 139)(131, 135)
c: (2, 176, 30, 12)(3, 175, 83, 91)(4, 122, 172, 90)(5, 121, 9, 61)(6, 116, 26,
72)(7, 115, 79, 151)(8, 62, 180, 150)(10, 56, 34, 132)(11, 55, 75, 31)(13, 45,
169, 149)(14, 28, 18, 148)(15, 27, 71, 59)(16, 166, 160, 58)(17, 165, 177,
29)(19, 147, 67, 119)(20, 106, 168, 118)(21, 105, 173, 89)(22, 88)(23, 87, 63,
179)(24, 46, 164, 178)(25, 77, 157, 117)(32, 138, 156, 74)(33, 137, 161, 57)(35,
131, 51, 135)(36, 78, 152, 134)(37, 109, 145, 73)(38, 104, 174, 84)(39, 103, 47,
163)(40, 50, 136, 162)(41, 49, 153, 133)(42, 44, 170, 144)(48, 110, 140,
102)(52, 94, 124, 130)(53, 93, 141, 101)(54, 76, 158, 100)(60, 154, 128, 70)(64,
126, 112, 86)(65, 125, 129, 69)(66, 120, 146, 68)(80, 98, 108, 114)(81, 97, 113,
85)(82, 92, 142, 96)(95, 123, 171, 143)(99, 107, 167, 159)(111, 139, 155,
127)
C4[ 180, 16 ]
180
-1 176 12 2 30
-2 55 165 1 3
-3 2 4 104 142
-4 3 5 95 21
-5 34 4 180 6
-6 157 59 5 7
-7 134 6 8 108
-8 13 7 9 87
-9 26 172 8 10
-10 11 51 161 9
-11 12 100 138 10
-12 11 1 91 17
-13 24 14 8 42
-14 67 177 13 15
-15 154 14 16 116
-16 33 15 17 107
-17 12 46 16 18
-18 169 71 17 19
-19 146 18 20 120
-20 99 25 19 21
-21 22 4 38 20
-22 23 63 173 21
-23 22 24 112 150
-24 23 13 103 29
-25 36 26 20 54
-26 79 25 27 9
-27 166 26 28 128
-28 45 27 29 119
-29 24 58 28 30
-30 1 83 29 31
-31 132 158 30 32
-32 33 111 37 31
-33 34 16 50 32
-34 33 35 5 75
-35 34 36 124 162
-36 35 25 115 41
-37 66 48 38 32
-38 91 37 39 21
-39 178 38 40 140
-40 57 39 41 131
-41 36 70 40 42
-42 13 95 41 43
-43 44 144 170 42
-44 45 123 49 43
-45 44 46 28 62
-46 45 47 17 87
-47 46 48 136 174
-48 47 37 127 53
-49 44 78 60 50
-50 33 103 49 51
-51 50 52 152 10
-52 143 69 51 53
-53 48 82 52 54
-54 55 25 107 53
-55 56 2 156 54
-56 55 57 135 61
-57 56 58 40 74
-58 99 57 59 29
-59 58 60 148 6
-60 59 49 139 65
-61 56 90 72 62
-62 45 115 61 63
-63 22 62 64 164
-64 155 81 63 65
-65 66 60 94 64
-66 67 37 119 65
-67 66 68 14 168
-68 67 69 147 73
-69 68 70 52 86
-70 111 69 71 41
-71 70 72 160 18
-72 77 71 61 151
-73 68 102 84 74
-74 57 127 73 75
-75 176 34 74 76
-76 77 167 93 75
-77 78 72 106 76
-78 77 79 49 131
-79 78 80 26 180
-80 79 81 159 85
-81 80 82 64 98
-82 123 81 83 53
-83 82 84 172 30
-84 89 83 73 163
-85 80 114 96 86
-86 69 139 85 87
-87 88 46 8 86
-88 89 179 105 87
-89 88 90 84 118
-90 143 89 91 61
-91 12 90 92 38
-92 91 93 171 97
-93 110 92 94 76
-94 135 93 95 65
-95 4 94 96 42
-96 101 95 85 175
-97 92 126 108 98
-98 99 81 151 97
-99 100 58 20 98
-100 11 99 101 117
-101 100 102 96 130
-102 155 101 103 73
-103 24 102 104 50
-104 3 103 105 109
-105 88 122 104 106
-106 77 147 105 107
-107 16 106 108 54
-108 113 7 107 97
-109 110 104 138 120
-110 111 93 163 109
-111 110 112 70 32
-112 23 111 113 129
-113 112 114 108 142
-114 167 113 115 85
-115 36 114 116 62
-116 121 15 115 117
-117 100 134 116 118
-118 89 159 117 119
-119 66 28 118 120
-120 125 19 119 109
-121 132 122 116 150
-122 121 123 105 175
-123 44 122 124 82
-124 35 123 125 141
-125 154 124 126 120
-126 179 125 127 97
-127 48 126 128 74
-128 133 27 127 129
-129 112 146 128 130
-130 101 171 129 131
-131 132 78 40 130
-132 121 137 31 131
-133 144 134 128 162
-134 133 135 7 117
-135 56 134 136 94
-136 47 135 137 153
-137 132 166 136 138
-138 11 137 139 109
-139 60 138 140 86
-140 145 39 139 141
-141 124 158 140 142
-142 143 3 113 141
-143 144 90 52 142
-144 143 133 149 43
-145 156 146 140 174
-146 145 147 19 129
-147 68 146 148 106
-148 165 59 147 149
-149 144 178 148 150
-150 121 23 149 151
-151 72 150 152 98
-152 157 51 151 153
-153 154 136 170 152
-154 155 15 125 153
-155 154 156 102 64
-156 55 155 145 161
-157 168 158 6 152
-158 157 159 31 141
-159 80 158 160 118
-160 177 71 159 161
-161 156 160 162 10
-162 133 35 161 163
-163 110 84 162 164
-164 165 169 63 163
-165 166 2 148 164
-166 165 167 27 137
-167 166 168 114 76
-168 67 167 157 173
-169 180 170 18 164
-170 169 171 43 153
-171 92 170 172 130
-172 83 171 173 9
-173 22 168 172 174
-174 145 47 173 175
-175 176 122 96 174
-176 1 177 75 175
-177 176 178 14 160
-178 177 179 39 149
-179 88 178 180 126
-180 79 179 169 5
0