C4graphGraph forms for C4 [ 180, 18 ] = Pr_60(1,13,17,29)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 180, 18 ] = Pr_60(1,13,17,29).

(I) Following is a form readable by MAGMA:

g:=Graph<180|{ {2, 3}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {54, 55}, {56, 57}, {58, 59}, {1, 2}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {57, 58}, {3, 4}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {7, 8}, {39, 40}, {23, 24}, {55, 56}, {104, 121}, {106, 123}, {108, 125}, {110, 127}, {105, 122}, {109, 126}, {107, 124}, {128, 157}, {130, 159}, {15, 16}, {129, 158}, {128, 159}, {47, 48}, {129, 160}, {149, 180}, {147, 178}, {145, 176}, {143, 174}, {141, 172}, {139, 170}, {137, 168}, {135, 166}, {133, 164}, {131, 162}, {130, 161}, {151, 180}, {147, 176}, {146, 177}, {143, 172}, {142, 173}, {139, 168}, {138, 169}, {135, 164}, {134, 165}, {131, 160}, {132, 161}, {150, 179}, {148, 177}, {142, 171}, {140, 169}, {134, 163}, {132, 163}, {149, 178}, {148, 179}, {141, 170}, {140, 171}, {133, 162}, {136, 165}, {138, 167}, {16, 63}, {137, 166}, {136, 167}, {15, 62}, {14, 61}, {1, 61}, {2, 62}, {3, 63}, {64, 124}, {65, 125}, {66, 126}, {67, 127}, {1, 60}, {146, 175}, {144, 173}, {31, 32}, {145, 174}, {144, 175}, {4, 64}, {52, 112}, {47, 107}, {46, 106}, {45, 105}, {44, 104}, {39, 99}, {38, 98}, {37, 97}, {36, 96}, {5, 65}, {6, 66}, {7, 67}, {12, 72}, {13, 73}, {14, 74}, {15, 75}, {20, 80}, {21, 81}, {22, 82}, {23, 83}, {28, 88}, {29, 89}, {30, 90}, {31, 91}, {53, 113}, {54, 114}, {55, 115}, {60, 120}, {61, 121}, {62, 122}, {63, 123}, {8, 68}, {43, 103}, {42, 102}, {41, 101}, {40, 100}, {9, 69}, {10, 70}, {11, 71}, {24, 84}, {25, 85}, {26, 86}, {27, 87}, {56, 116}, {57, 117}, {58, 118}, {59, 119}, {17, 64}, {53, 100}, {51, 98}, {49, 96}, {19, 66}, {21, 68}, {23, 70}, {25, 72}, {27, 74}, {29, 76}, {31, 78}, {55, 102}, {57, 104}, {59, 106}, {18, 65}, {50, 97}, {22, 69}, {26, 73}, {30, 77}, {54, 101}, {58, 105}, {20, 67}, {52, 99}, {28, 75}, {60, 107}, {16, 76}, {51, 111}, {50, 110}, {49, 109}, {48, 108}, {17, 77}, {18, 78}, {19, 79}, {24, 71}, {56, 103}, {4, 111}, {1, 108}, {3, 110}, {2, 109}, {48, 95}, {32, 79}, {33, 80}, {47, 94}, {45, 92}, {43, 90}, {41, 88}, {39, 86}, {37, 84}, {35, 82}, {34, 81}, {46, 93}, {42, 89}, {38, 85}, {5, 112}, {7, 114}, {13, 120}, {6, 113}, {44, 91}, {36, 83}, {8, 115}, {12, 119}, {32, 92}, {35, 95}, {33, 93}, {34, 94}, {9, 116}, {11, 118}, {10, 117}, {40, 87}, {63, 140}, {62, 139}, {61, 138}, {68, 128}, {119, 179}, {118, 178}, {117, 177}, {116, 176}, {69, 129}, {70, 130}, {71, 131}, {76, 136}, {77, 137}, {78, 138}, {79, 139}, {84, 144}, {85, 145}, {86, 146}, {87, 147}, {92, 152}, {93, 153}, {94, 154}, {95, 155}, {100, 160}, {101, 161}, {102, 162}, {103, 163}, {108, 168}, {109, 169}, {110, 170}, {111, 171}, {72, 132}, {120, 180}, {73, 133}, {74, 134}, {75, 135}, {88, 148}, {89, 149}, {90, 150}, {91, 151}, {104, 164}, {105, 165}, {106, 166}, {107, 167}, {64, 141}, {66, 143}, {80, 157}, {82, 159}, {96, 173}, {98, 175}, {65, 142}, {81, 158}, {97, 174}, {67, 144}, {71, 148}, {75, 152}, {79, 156}, {99, 176}, {103, 180}, {68, 145}, {70, 147}, {76, 153}, {78, 155}, {100, 177}, {102, 179}, {69, 146}, {77, 154}, {101, 178}, {80, 140}, {115, 175}, {114, 174}, {113, 173}, {112, 172}, {81, 141}, {82, 142}, {83, 143}, {72, 149}, {74, 151}, {73, 150}, {121, 152}, {127, 158}, {125, 156}, {123, 154}, {122, 153}, {127, 156}, {126, 157}, {123, 152}, {124, 153}, {126, 155}, {124, 155}, {125, 154}, {122, 151}, {111, 128}, {121, 150}, {112, 129}, {120, 137}, {118, 135}, {116, 133}, {114, 131}, {83, 160}, {117, 134}, {113, 130}, {87, 164}, {91, 168}, {95, 172}, {84, 161}, {86, 163}, {92, 169}, {94, 171}, {85, 162}, {115, 132}, {93, 170}, {96, 156}, {97, 157}, {98, 158}, {99, 159}, {88, 165}, {90, 167}, {89, 166}, {119, 136} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 60)(3, 59)(4, 58)(5, 57)(6, 56)(7, 55)(8, 54)(9, 53)(10, 52)(11, 51)(12, 50)(13, 49)(14, 48)(15, 47)(16, 46)(17, 45)(18, 44)(19, 43)(20, 42)(21, 41)(22, 40)(23, 39)(24, 38)(25, 37)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(61, 108)(62, 107)(63, 106)(64, 105)(65, 104)(66, 103)(67, 102)(68, 101)(69, 100)(70, 99)(71, 98)(72, 97)(73, 96)(74, 95)(75, 94)(76, 93)(77, 92)(78, 91)(79, 90)(80, 89)(81, 88)(82, 87)(83, 86)(84, 85)(109, 120)(110, 119)(111, 118)(112, 117)(113, 116)(114, 115)(121, 125)(122, 124)(126, 180)(127, 179)(128, 178)(129, 177)(130, 176)(131, 175)(132, 174)(133, 173)(134, 172)(135, 171)(136, 170)(137, 169)(138, 168)(139, 167)(140, 166)(141, 165)(142, 164)(143, 163)(144, 162)(145, 161)(146, 160)(147, 159)(148, 158)(149, 157)(150, 156)(151, 155)(152, 154)
b: (2, 61)(3, 121)(4, 104)(5, 57)(6, 117)(7, 177)(8, 100)(9, 53)(10, 113)(11, 173)(12, 96)(13, 49)(14, 109)(15, 169)(16, 92)(17, 45)(18, 105)(19, 165)(20, 88)(21, 41)(22, 101)(23, 161)(24, 84)(25, 37)(26, 97)(27, 157)(28, 80)(29, 33)(30, 93)(31, 153)(32, 76)(34, 89)(35, 149)(36, 72)(38, 85)(39, 145)(40, 68)(42, 81)(43, 141)(44, 64)(46, 77)(47, 137)(48, 120)(50, 73)(51, 133)(52, 116)(54, 69)(55, 129)(56, 112)(58, 65)(59, 125)(60, 108)(62, 138)(63, 152)(66, 134)(67, 148)(70, 130)(71, 144)(74, 126)(75, 140)(78, 122)(79, 136)(82, 178)(83, 132)(86, 174)(87, 128)(90, 170)(91, 124)(94, 166)(95, 180)(98, 162)(99, 176)(102, 158)(103, 172)(106, 154)(107, 168)(110, 150)(111, 164)(114, 146)(115, 160)(118, 142)(119, 156)(127, 179)(131, 175)(135, 171)(139, 167)(143, 163)(147, 159)(151, 155)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 180, 18 ]
180
-1 2 60 61 108
-2 1 3 62 109
-3 110 2 4 63
-4 111 3 5 64
-5 112 4 6 65
-6 66 113 5 7
-7 67 114 6 8
-8 68 115 7 9
-9 69 116 8 10
-10 11 70 117 9
-11 12 71 118 10
-12 11 13 72 119
-13 12 14 73 120
-14 13 15 61 74
-15 14 16 62 75
-16 15 17 63 76
-17 77 16 18 64
-18 78 17 19 65
-19 66 79 18 20
-20 67 80 19 21
-21 22 68 81 20
-22 23 69 82 21
-23 22 24 70 83
-24 23 25 71 84
-25 24 26 72 85
-26 25 27 73 86
-27 26 28 74 87
-28 88 27 29 75
-29 89 28 30 76
-30 77 90 29 31
-31 78 91 30 32
-32 33 79 92 31
-33 34 80 93 32
-34 33 35 81 94
-35 34 36 82 95
-36 35 37 83 96
-37 36 38 84 97
-38 37 39 85 98
-39 99 38 40 86
-40 100 39 41 87
-41 88 101 40 42
-42 89 102 41 43
-43 44 90 103 42
-44 45 91 104 43
-45 44 46 92 105
-46 45 47 93 106
-47 46 48 94 107
-48 47 49 95 108
-49 48 50 96 109
-50 110 49 51 97
-51 111 50 52 98
-52 99 112 51 53
-53 100 113 52 54
-54 55 101 114 53
-55 56 102 115 54
-56 55 57 103 116
-57 56 58 104 117
-58 57 59 105 118
-59 58 60 106 119
-60 1 59 107 120
-61 121 1 14 138
-62 122 2 15 139
-63 123 3 16 140
-64 124 4 17 141
-65 125 5 18 142
-66 143 126 6 19
-67 144 127 7 20
-68 145 128 8 21
-69 22 146 129 9
-70 23 147 130 10
-71 11 24 148 131
-72 132 12 25 149
-73 133 13 26 150
-74 134 14 27 151
-75 135 15 28 152
-76 136 16 29 153
-77 154 137 17 30
-78 155 138 18 31
-79 156 139 19 32
-80 33 157 140 20
-81 34 158 141 21
-82 22 35 159 142
-83 143 23 36 160
-84 144 24 37 161
-85 145 25 38 162
-86 146 26 39 163
-87 147 27 40 164
-88 165 148 28 41
-89 166 149 29 42
-90 167 150 30 43
-91 44 168 151 31
-92 45 169 152 32
-93 33 46 170 153
-94 154 34 47 171
-95 155 35 48 172
-96 156 36 49 173
-97 157 37 50 174
-98 158 38 51 175
-99 176 159 39 52
-100 177 160 40 53
-101 178 161 41 54
-102 55 179 162 42
-103 56 180 163 43
-104 44 121 57 164
-105 165 45 122 58
-106 166 46 123 59
-107 167 47 124 60
-108 1 168 48 125
-109 2 169 49 126
-110 3 170 50 127
-111 4 171 51 128
-112 5 172 52 129
-113 6 173 53 130
-114 7 174 54 131
-115 55 132 8 175
-116 176 56 133 9
-117 177 57 134 10
-118 11 178 58 135
-119 12 179 59 136
-120 13 180 60 137
-121 104 61 150 152
-122 105 62 151 153
-123 154 106 63 152
-124 155 107 64 153
-125 154 156 108 65
-126 66 155 157 109
-127 110 67 156 158
-128 111 68 157 159
-129 112 69 158 160
-130 113 70 159 161
-131 114 71 160 162
-132 115 72 161 163
-133 116 73 162 164
-134 165 117 74 163
-135 166 118 75 164
-136 165 167 119 76
-137 77 166 168 120
-138 78 167 169 61
-139 79 168 170 62
-140 80 169 171 63
-141 81 170 172 64
-142 82 171 173 65
-143 66 83 172 174
-144 67 84 173 175
-145 176 68 85 174
-146 177 69 86 175
-147 176 178 70 87
-148 88 177 179 71
-149 89 178 180 72
-150 121 90 179 73
-151 122 91 180 74
-152 121 123 92 75
-153 122 124 93 76
-154 77 123 125 94
-155 78 124 126 95
-156 79 125 127 96
-157 80 126 128 97
-158 81 127 129 98
-159 99 82 128 130
-160 100 83 129 131
-161 132 101 84 130
-162 133 102 85 131
-163 132 134 103 86
-164 133 135 104 87
-165 88 134 136 105
-166 89 135 137 106
-167 90 136 138 107
-168 91 137 139 108
-169 92 138 140 109
-170 110 93 139 141
-171 111 94 140 142
-172 143 112 95 141
-173 144 113 96 142
-174 143 145 114 97
-175 144 146 115 98
-176 99 145 147 116
-177 100 146 148 117
-178 101 147 149 118
-179 102 148 150 119
-180 103 149 151 120
0

**************