C4graphGraph forms for C4 [ 180, 20 ] = KE_45(1,8,20,3,19)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 180, 20 ] = KE_45(1,8,20,3,19).

(I) Following is a form readable by MAGMA:

g:=Graph<180|{ {2, 3}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {1, 2}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {3, 4}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {7, 8}, {39, 40}, {23, 24}, {136, 155}, {160, 179}, {140, 159}, {72, 92}, {73, 93}, {74, 94}, {75, 95}, {137, 156}, {161, 180}, {139, 158}, {138, 157}, {71, 91}, {15, 16}, {10, 47}, {16, 53}, {18, 55}, {24, 61}, {26, 63}, {142, 168}, {151, 177}, {150, 176}, {143, 169}, {9, 46}, {17, 54}, {25, 62}, {136, 162}, {153, 179}, {152, 178}, {141, 167}, {140, 166}, {137, 163}, {19, 56}, {23, 60}, {1, 45}, {76, 96}, {77, 97}, {78, 98}, {79, 99}, {20, 57}, {159, 178}, {157, 176}, {143, 162}, {141, 160}, {130, 175}, {22, 59}, {64, 109}, {66, 111}, {80, 125}, {82, 127}, {128, 173}, {138, 164}, {154, 180}, {139, 165}, {21, 58}, {158, 177}, {142, 161}, {65, 110}, {81, 126}, {129, 174}, {67, 112}, {156, 175}, {152, 171}, {148, 167}, {144, 163}, {135, 180}, {131, 176}, {71, 116}, {75, 120}, {79, 124}, {80, 100}, {81, 101}, {82, 102}, {83, 103}, {88, 108}, {89, 109}, {90, 110}, {68, 113}, {155, 174}, {153, 172}, {147, 166}, {145, 164}, {134, 179}, {132, 177}, {70, 115}, {76, 121}, {78, 123}, {69, 114}, {154, 173}, {146, 165}, {133, 178}, {77, 122}, {144, 170}, {149, 175}, {148, 174}, {145, 171}, {11, 48}, {15, 52}, {84, 104}, {85, 105}, {86, 106}, {87, 107}, {12, 49}, {151, 170}, {149, 168}, {14, 51}, {72, 117}, {74, 119}, {146, 172}, {147, 173}, {13, 50}, {150, 169}, {31, 32}, {73, 118}, {46, 111}, {60, 125}, {58, 123}, {56, 121}, {54, 119}, {52, 117}, {50, 115}, {48, 113}, {62, 127}, {49, 114}, {61, 126}, {57, 122}, {53, 118}, {51, 116}, {59, 124}, {55, 120}, {1, 83}, {4, 86}, {5, 87}, {8, 90}, {51, 96}, {59, 104}, {55, 100}, {63, 108}, {52, 97}, {60, 105}, {54, 99}, {62, 107}, {2, 84}, {3, 85}, {53, 98}, {61, 106}, {1, 91}, {37, 127}, {36, 126}, {4, 94}, {5, 95}, {32, 122}, {33, 123}, {27, 64}, {31, 68}, {28, 65}, {58, 103}, {56, 101}, {30, 67}, {2, 92}, {35, 125}, {34, 124}, {3, 93}, {6, 88}, {7, 89}, {29, 66}, {57, 102}, {47, 112}, {32, 69}, {42, 79}, {40, 77}, {34, 71}, {6, 96}, {7, 97}, {14, 104}, {15, 105}, {22, 112}, {23, 113}, {30, 120}, {31, 121}, {33, 70}, {41, 78}, {8, 98}, {9, 99}, {12, 102}, {13, 103}, {24, 114}, {25, 115}, {28, 118}, {29, 119}, {35, 72}, {39, 76}, {36, 73}, {50, 95}, {48, 93}, {38, 75}, {10, 100}, {11, 101}, {26, 116}, {27, 117}, {37, 74}, {49, 94}, {47, 92}, {46, 91}, {16, 106}, {17, 107}, {20, 110}, {21, 111}, {43, 80}, {44, 81}, {18, 108}, {19, 109}, {45, 82}, {47, 140}, {59, 152}, {55, 148}, {51, 144}, {63, 156}, {46, 139}, {60, 153}, {54, 147}, {52, 145}, {62, 155}, {38, 128}, {39, 129}, {53, 146}, {61, 154}, {40, 130}, {45, 135}, {44, 134}, {41, 131}, {56, 149}, {58, 151}, {42, 132}, {43, 133}, {57, 150}, {48, 141}, {50, 143}, {49, 142}, {63, 128}, {64, 129}, {66, 131}, {68, 133}, {70, 135}, {65, 130}, {69, 134}, {67, 132}, {88, 136}, {89, 137}, {90, 138}, {83, 128}, {87, 132}, {91, 136}, {95, 140}, {115, 160}, {119, 164}, {123, 168}, {127, 172}, {84, 129}, {86, 131}, {92, 137}, {94, 139}, {116, 161}, {118, 163}, {124, 169}, {126, 171}, {85, 130}, {93, 138}, {117, 162}, {125, 170}, {64, 157}, {66, 159}, {88, 133}, {90, 135}, {120, 165}, {122, 167}, {65, 158}, {89, 134}, {121, 166}, {67, 160}, {71, 164}, {75, 168}, {79, 172}, {83, 176}, {87, 180}, {68, 161}, {70, 163}, {76, 169}, {78, 171}, {84, 177}, {86, 179}, {69, 162}, {77, 170}, {85, 178}, {72, 165}, {74, 167}, {96, 141}, {98, 143}, {112, 157}, {114, 159}, {73, 166}, {97, 142}, {113, 158}, {99, 144}, {103, 148}, {107, 152}, {111, 156}, {100, 145}, {102, 147}, {108, 153}, {110, 155}, {101, 146}, {109, 154}, {80, 173}, {82, 175}, {104, 149}, {106, 151}, {81, 174}, {105, 150} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 45)(3, 44)(4, 43)(5, 42)(6, 41)(7, 40)(8, 39)(9, 38)(10, 37)(11, 36)(12, 35)(13, 34)(14, 33)(15, 32)(16, 31)(17, 30)(18, 29)(19, 28)(20, 27)(21, 26)(22, 25)(23, 24)(46, 128)(47, 127)(48, 126)(49, 125)(50, 124)(51, 123)(52, 122)(53, 121)(54, 120)(55, 119)(56, 118)(57, 117)(58, 116)(59, 115)(60, 114)(61, 113)(62, 112)(63, 111)(64, 110)(65, 109)(66, 108)(67, 107)(68, 106)(69, 105)(70, 104)(71, 103)(72, 102)(73, 101)(74, 100)(75, 99)(76, 98)(77, 97)(78, 96)(79, 95)(80, 94)(81, 93)(82, 92)(83, 91)(84, 135)(85, 134)(86, 133)(87, 132)(88, 131)(89, 130)(90, 129)(136, 176)(137, 175)(138, 174)(139, 173)(140, 172)(141, 171)(142, 170)(143, 169)(144, 168)(145, 167)(146, 166)(147, 165)(148, 164)(149, 163)(150, 162)(151, 161)(152, 160)(153, 159)(154, 158)(155, 157)(177, 180)(178, 179)
b: (2, 83)(3, 103)(4, 13)(5, 50)(6, 115)(7, 25)(8, 62)(9, 127)(10, 37)(11, 74)(12, 94)(14, 86)(15, 106)(17, 53)(18, 118)(19, 28)(20, 65)(21, 130)(22, 40)(23, 77)(24, 97)(26, 89)(27, 109)(29, 56)(30, 121)(32, 68)(33, 133)(34, 43)(35, 80)(36, 100)(38, 47)(39, 112)(41, 59)(42, 124)(44, 71)(45, 91)(46, 82)(48, 167)(51, 179)(52, 61)(54, 146)(55, 73)(57, 158)(58, 85)(60, 170)(63, 137)(66, 149)(67, 76)(69, 161)(70, 88)(72, 173)(75, 140)(78, 152)(81, 164)(84, 176)(87, 143)(90, 155)(92, 128)(93, 148)(96, 160)(98, 107)(99, 172)(101, 119)(102, 139)(104, 131)(105, 151)(108, 163)(111, 175)(113, 122)(114, 142)(116, 134)(117, 154)(120, 166)(123, 178)(126, 145)(129, 157)(132, 169)(135, 136)(138, 174)(144, 153)(147, 165)(150, 177)(159, 168)(162, 180)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45)(46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135)(136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 180, 20 ]
180
-1 45 2 91 83
-2 1 3 92 84
-3 2 4 93 85
-4 3 5 94 86
-5 4 6 95 87
-6 88 5 7 96
-7 89 6 8 97
-8 90 7 9 98
-9 99 46 8 10
-10 11 100 47 9
-11 12 101 48 10
-12 11 13 102 49
-13 12 14 103 50
-14 13 15 104 51
-15 14 16 105 52
-16 15 17 106 53
-17 16 18 107 54
-18 55 17 19 108
-19 56 18 20 109
-20 110 57 19 21
-21 22 111 58 20
-22 23 112 59 21
-23 22 24 113 60
-24 23 25 114 61
-25 24 26 115 62
-26 25 27 116 63
-27 26 28 117 64
-28 27 29 118 65
-29 66 28 30 119
-30 67 29 31 120
-31 121 68 30 32
-32 33 122 69 31
-33 34 123 70 32
-34 33 35 124 71
-35 34 36 125 72
-36 35 37 126 73
-37 36 38 127 74
-38 37 39 128 75
-39 38 40 129 76
-40 77 39 41 130
-41 78 40 42 131
-42 132 79 41 43
-43 44 133 80 42
-44 45 134 81 43
-45 44 1 135 82
-46 111 91 139 9
-47 112 92 140 10
-48 11 113 93 141
-49 12 114 94 142
-50 143 13 115 95
-51 144 14 116 96
-52 145 15 117 97
-53 146 16 118 98
-54 99 147 17 119
-55 100 148 18 120
-56 121 101 149 19
-57 122 102 150 20
-58 123 103 151 21
-59 22 124 104 152
-60 23 125 105 153
-61 154 24 126 106
-62 155 25 127 107
-63 156 26 128 108
-64 157 27 129 109
-65 110 158 28 130
-66 111 159 29 131
-67 132 112 160 30
-68 133 113 161 31
-69 134 114 162 32
-70 33 135 115 163
-71 34 91 116 164
-72 165 35 92 117
-73 166 36 93 118
-74 167 37 94 119
-75 168 38 95 120
-76 121 169 39 96
-77 122 170 40 97
-78 123 171 41 98
-79 99 124 172 42
-80 100 125 173 43
-81 44 101 126 174
-82 45 102 127 175
-83 176 1 103 128
-84 177 2 104 129
-85 178 3 105 130
-86 179 4 106 131
-87 132 180 5 107
-88 133 136 6 108
-89 134 137 7 109
-90 110 135 138 8
-91 1 46 136 71
-92 2 47 137 72
-93 3 48 138 73
-94 4 49 139 74
-95 5 50 140 75
-96 6 51 141 76
-97 77 7 52 142
-98 143 78 8 53
-99 144 79 9 54
-100 55 145 80 10
-101 11 56 146 81
-102 12 57 147 82
-103 13 58 148 83
-104 14 59 149 84
-105 15 60 150 85
-106 16 61 151 86
-107 17 62 152 87
-108 88 18 63 153
-109 154 89 19 64
-110 155 90 20 65
-111 66 46 156 21
-112 22 67 47 157
-113 23 68 48 158
-114 24 69 49 159
-115 25 70 50 160
-116 26 71 51 161
-117 27 72 52 162
-118 28 73 53 163
-119 29 74 54 164
-120 55 165 30 75
-121 56 166 31 76
-122 77 57 167 32
-123 33 78 58 168
-124 34 79 59 169
-125 35 80 60 170
-126 36 81 61 171
-127 37 82 62 172
-128 38 83 63 173
-129 39 84 64 174
-130 40 85 65 175
-131 66 176 41 86
-132 67 177 42 87
-133 88 68 178 43
-134 44 89 69 179
-135 45 90 70 180
-136 88 155 91 162
-137 89 156 92 163
-138 90 157 93 164
-139 165 46 158 94
-140 166 47 159 95
-141 167 48 160 96
-142 168 49 161 97
-143 169 50 162 98
-144 99 170 51 163
-145 100 171 52 164
-146 165 101 172 53
-147 166 102 173 54
-148 55 167 103 174
-149 56 168 104 175
-150 176 57 169 105
-151 177 58 170 106
-152 178 59 171 107
-153 179 60 172 108
-154 180 61 173 109
-155 110 136 62 174
-156 111 137 63 175
-157 176 112 138 64
-158 177 113 139 65
-159 66 178 114 140
-160 67 179 115 141
-161 68 180 116 142
-162 143 69 136 117
-163 144 70 137 118
-164 145 71 138 119
-165 146 72 139 120
-166 121 147 73 140
-167 122 148 74 141
-168 123 149 75 142
-169 143 124 150 76
-170 77 144 125 151
-171 78 145 126 152
-172 79 146 127 153
-173 154 80 147 128
-174 155 81 148 129
-175 156 82 149 130
-176 157 83 150 131
-177 132 158 84 151
-178 133 159 85 152
-179 134 160 86 153
-180 154 135 161 87
0

**************