[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 29 ] =
UG(ATD[180,46]).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {34, 35}, {162, 163}, {40, 41}, {20, 22}, {1, 2}, {164, 167},
{148, 151}, {136, 139}, {36, 39}, {13, 14}, {100, 103}, {1, 5}, {160, 164}, {3,
7}, {2, 6}, {90, 94}, {3, 6}, {146, 151}, {137, 140}, {41, 44}, {72, 77}, {98,
100}, {170, 172}, {42, 45}, {154, 157}, {91, 92}, {52, 60}, {145, 153}, {85,
93}, {87, 95}, {113, 121}, {23, 30}, {149, 156}, {36, 46}, {147, 153}, {80, 90},
{20, 31}, {33, 42}, {112, 123}, {4, 8}, {64, 76}, {39, 43}, {114, 127}, {160,
173}, {132, 137}, {96, 110}, {166, 168}, {162, 172}, {147, 157}, {32, 48}, {139,
155}, {129, 144}, {2, 16}, {3, 17}, {7, 20}, {11, 24}, {15, 27}, {12, 25}, {70,
83}, {77, 88}, {102, 115}, {4, 18}, {5, 19}, {74, 92}, {13, 26}, {166, 177},
{164, 179}, {69, 82}, {78, 89}, {111, 120}, {103, 127}, {43, 50}, {73, 80}, {9,
19}, {102, 124}, {97, 125}, {107, 119}, {8, 21}, {133, 152}, {10, 23}, {10, 20},
{170, 180}, {32, 62}, {11, 21}, {105, 119}, {9, 22}, {174, 177}, {39, 56}, {77,
82}, {144, 176}, {29, 60}, {128, 161}, {75, 106}, {81, 115}, {135, 165}, {134,
164}, {130, 160}, {30, 61}, {75, 104}, {69, 97}, {65, 100}, {24, 63}, {28, 59},
{88, 112}, {16, 57}, {23, 62}, {29, 55}, {134, 172}, {131, 169}, {130, 168},
{84, 126}, {16, 59}, {132, 175}, {4, 40}, {156, 176}, {79, 99}, {17, 60}, {142,
163}, {74, 103}, {18, 61}, {76, 99}, {85, 122}, {14, 63}, {65, 112}, {64, 113},
{78, 124}, {129, 179}, {81, 98}, {94, 109}, {148, 160}, {150, 162}, {149, 161},
{5, 48}, {15, 58}, {13, 56}, {7, 50}, {19, 37}, {89, 111}, {6, 49}, {154, 173},
{14, 57}, {88, 96}, {26, 35}, {146, 171}, {82, 107}, {87, 110}, {8, 51}, {143,
180}, {12, 55}, {155, 167}, {9, 52}, {28, 33}, {11, 54}, {88, 101}, {84, 106},
{140, 178}, {91, 101}, {10, 53}, {34, 96}, {16, 83}, {58, 126}, {54, 115}, {17,
86}, {10, 66}, {37, 109}, {47, 101}, {42, 97}, {35, 111}, {50, 127}, {49, 126},
{2, 81}, {51, 96}, {44, 127}, {38, 117}, {30, 77}, {40, 125}, {41, 126}, {34,
122}, {35, 123}, {13, 84}, {37, 124}, {32, 121}, {25, 64}, {27, 65}, {31, 69},
{30, 68}, {6, 93}, {43, 119}, {58, 102}, {18, 79}, {52, 105}, {28, 66}, {54,
104}, {29, 67}, {42, 74}, {33, 64}, {61, 95}, {19, 112}, {47, 76}, {21, 113},
{23, 115}, {22, 114}, {34, 71}, {59, 94}, {46, 75}, {43, 78}, {36, 65}, {32,
70}, {47, 73}, {45, 75}, {31, 120}, {63, 86}, {28, 119}, {62, 85}, {44, 71},
{31, 116}, {15, 99}, {25, 117}, {24, 116}, {27, 118}, {12, 98}, {39, 73}, {38,
72}, {12, 124}, {60, 79}, {26, 108}, {46, 89}, {5, 125}, {49, 72}, {63, 68},
{14, 114}, {38, 90}, {18, 111}, {62, 67}, {48, 78}, {17, 110}, {21, 149}, {37,
166}, {45, 168}, {27, 146}, {36, 180}, {61, 172}, {22, 132}, {57, 171}, {53,
167}, {8, 155}, {33, 178}, {3, 150}, {26, 141}, {24, 131}, {7, 154}, {25, 135},
{52, 148}, {57, 152}, {44, 142}, {56, 155}, {1, 165}, {1, 167}, {58, 147}, {53,
159}, {45, 128}, {47, 130}, {15, 161}, {50, 156}, {4, 171}, {46, 129}, {53,
133}, {55, 134}, {38, 148}, {55, 133}, {48, 131}, {51, 128}, {40, 157}, {41,
158}, {51, 132}, {54, 142}, {11, 178}, {59, 128}, {29, 161}, {9, 180}, {49,
140}, {56, 135}, {74, 139}, {104, 169}, {114, 179}, {72, 138}, {84, 150}, {108,
174}, {95, 156}, {67, 135}, {73, 141}, {79, 139}, {85, 144}, {105, 175}, {71,
143}, {123, 178}, {99, 169}, {86, 157}, {90, 145}, {67, 142}, {69, 136}, {98,
175}, {70, 137}, {92, 147}, {122, 170}, {91, 138}, {89, 138}, {82, 134}, {80,
133}, {118, 163}, {123, 173}, {86, 129}, {71, 159}, {104, 177}, {118, 175},
{105, 176}, {106, 176}, {107, 177}, {68, 159}, {83, 136}, {66, 158}, {80, 140},
{81, 141}, {83, 143}, {117, 169}, {120, 165}, {87, 137}, {120, 153}, {109, 136},
{108, 138}, {121, 145}, {118, 159}, {116, 158}, {70, 173}, {66, 174}, {68, 168},
{117, 154}, {121, 150}, {125, 141}, {102, 151}, {106, 152}, {107, 153}, {97,
146}, {92, 170}, {93, 171}, {103, 145}, {116, 130}, {91, 163}, {87, 174}, {122,
131}, {108, 149}, {110, 151}, {95, 165}, {100, 158}, {93, 166}, {94, 162}, {101,
152}, {109, 144}, {113, 143}, {76, 179} }>;
(II) A more general form is to represent the graph as the orbit of {34, 35}
under the group generated by the following permutations:
a: (2, 167)(3, 160)(4, 12)(5, 165)(6, 164)(7, 173)(8, 98)(9, 87)(10, 83)(11,
103)(13, 73)(14, 80)(16, 53)(17, 148)(18, 124)(19, 95)(20, 70)(21, 100)(22,
137)(23, 136)(24, 145)(25, 40)(26, 39)(27, 161)(28, 71)(29, 146)(30, 109)(31,
32)(33, 44)(34, 119)(35, 43)(36, 108)(37, 61)(38, 86)(41, 64)(42, 142)(45,
163)(46, 138)(47, 84)(48, 120)(49, 179)(50, 123)(51, 175)(52, 110)(54, 74)(55,
171)(56, 141)(57, 133)(58, 99)(59, 159)(60, 151)(62, 69)(63, 90)(65, 149)(66,
143)(67, 97)(68, 94)(72, 129)(75, 91)(76, 126)(77, 144)(78, 111)(79, 102)(81,
155)(82, 85)(88, 176)(92, 104)(93, 134)(96, 105)(101, 106)(107, 122)(112,
156)(113, 158)(114, 140)(115, 139)(116, 121)(117, 157)(118, 128)(125, 135)(127,
178)(130, 150)(131, 153)(147, 169)(162, 168)(166, 172)(170, 177)(174, 180) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(4, 12)(6, 19)(7, 22)(8, 25)(10, 31)(11, 33)(13, 39)(14, 43)(16,
48)(17, 52)(18, 55)(21, 64)(23, 69)(24, 28)(26, 73)(27, 58)(29, 79)(30, 82)(32,
83)(34, 90)(35, 80)(36, 84)(37, 93)(38, 96)(40, 98)(41, 100)(42, 54)(44,
103)(45, 104)(46, 106)(47, 108)(49, 112)(50, 114)(51, 117)(53, 120)(57, 78)(59,
131)(61, 134)(62, 136)(63, 119)(65, 126)(66, 116)(67, 139)(68, 107)(71, 145)(72,
88)(74, 142)(76, 149)(81, 125)(85, 109)(86, 105)(87, 160)(89, 152)(92, 163)(94,
122)(95, 164)(97, 115)(99, 161)(101, 138)(102, 146)(110, 148)(111, 133)(118,
147)(121, 143)(123, 140)(124, 171)(128, 169)(129, 176)(130, 174)(132, 154)(135,
155)(137, 173)(150, 180)(153, 159)(156, 179)(157, 175)(162, 170)(165, 167)(168,
177)
c: (1, 2, 6, 3, 7, 20, 10, 23, 62, 32, 70, 137, 87, 95, 165)(4, 13, 40, 14, 41,
63, 44, 24, 71, 11, 34, 21, 35, 8, 26)(5, 16, 49, 17, 50, 31, 53, 115, 85, 121,
173, 132, 174, 61, 135)(9, 28, 77, 29, 78, 136, 80, 151, 176, 153, 164, 98, 166,
162, 117)(12, 37, 94, 38, 52, 119, 82, 55, 124, 109, 90, 148, 105, 107, 134)(15,
46, 74, 47, 27, 75, 92, 76, 65, 45, 91, 99, 36, 42, 101)(18, 56, 125, 57, 126,
86, 127, 116, 159, 54, 122, 113, 123, 51, 108)(19, 59, 72, 60, 43, 69, 133, 102,
144, 145, 160, 175, 177, 172, 25)(22, 66, 30, 67, 48, 83, 140, 110, 156, 120,
167, 81, 93, 150, 154)(33, 88, 161, 89, 139, 73, 146, 106, 147, 179, 100, 168,
163, 169, 180)(39, 97, 152, 58, 129, 103, 130, 118, 104, 170, 64, 112, 128, 138,
79)(68, 142, 131, 143, 178, 96, 149, 111, 155, 141, 171, 84, 157, 114, 158)
C4[ 180, 29 ]
180
-1 165 2 167 5
-2 1 81 16 6
-3 6 17 7 150
-4 171 18 40 8
-5 1 48 125 19
-6 2 3 49 93
-7 154 3 50 20
-8 155 4 51 21
-9 22 180 19 52
-10 66 23 20 53
-11 24 178 21 54
-12 55 25 124 98
-13 56 14 26 84
-14 13 57 114 63
-15 99 58 27 161
-16 2 57 59 83
-17 110 3 60 86
-18 111 79 4 61
-19 112 37 5 9
-20 22 7 31 10
-21 11 113 149 8
-22 132 114 9 20
-23 115 62 30 10
-24 11 116 63 131
-25 12 135 117 64
-26 13 35 108 141
-27 146 15 118 65
-28 33 66 59 119
-29 55 67 60 161
-30 77 23 68 61
-31 69 116 20 120
-32 121 48 70 62
-33 178 28 42 64
-34 122 35 71 96
-35 34 111 123 26
-36 46 180 39 65
-37 166 124 19 109
-38 90 148 72 117
-39 56 36 73 43
-40 157 4 125 41
-41 44 158 126 40
-42 33 45 74 97
-43 78 39 50 119
-44 71 127 41 142
-45 168 128 42 75
-46 89 36 129 75
-47 101 73 130 76
-48 78 5 32 131
-49 126 6 72 140
-50 156 127 7 43
-51 132 128 8 96
-52 60 148 105 9
-53 133 167 159 10
-54 11 104 115 142
-55 12 133 134 29
-56 155 13 135 39
-57 14 16 171 152
-58 102 15 147 126
-59 16 28 94 128
-60 79 17 29 52
-61 18 95 172 30
-62 23 67 85 32
-63 24 68 14 86
-64 33 25 113 76
-65 100 112 36 27
-66 158 28 174 10
-67 135 29 62 142
-68 168 159 30 63
-69 136 82 31 97
-70 137 83 173 32
-71 44 143 34 159
-72 77 38 49 138
-73 47 80 39 141
-74 92 103 139 42
-75 45 46 104 106
-76 99 47 179 64
-77 88 82 72 30
-78 89 124 48 43
-79 99 60 18 139
-80 133 90 73 140
-81 2 115 141 98
-82 77 134 69 107
-83 143 70 136 16
-84 13 126 106 150
-85 122 144 93 62
-86 157 17 63 129
-87 110 137 95 174
-88 77 101 112 96
-89 78 111 46 138
-90 145 80 38 94
-91 101 92 138 163
-92 91 147 170 74
-93 166 6 171 85
-94 90 59 162 109
-95 165 156 61 87
-96 88 110 34 51
-97 69 146 125 42
-98 12 100 81 175
-99 79 15 169 76
-100 103 158 65 98
-101 88 47 91 152
-102 58 124 115 151
-103 100 145 127 74
-104 177 169 75 54
-105 176 52 119 175
-106 176 84 75 152
-107 177 82 119 153
-108 26 138 149 174
-109 144 37 136 94
-110 17 96 151 87
-111 89 35 18 120
-112 88 123 19 65
-113 121 143 64 21
-114 22 14 179 127
-115 23 102 81 54
-116 24 158 31 130
-117 154 25 169 38
-118 27 159 163 175
-119 28 105 107 43
-120 165 111 31 153
-121 145 113 150 32
-122 34 170 85 131
-123 35 112 178 173
-124 12 78 102 37
-125 5 40 97 141
-126 58 49 84 41
-127 44 103 114 50
-128 45 59 51 161
-129 144 46 179 86
-130 47 168 116 160
-131 122 24 48 169
-132 22 137 51 175
-133 55 80 53 152
-134 55 82 172 164
-135 165 56 67 25
-136 69 83 139 109
-137 132 70 140 87
-138 89 91 72 108
-139 155 79 136 74
-140 178 80 49 137
-141 26 81 125 73
-142 44 67 163 54
-143 113 180 71 83
-144 176 85 129 109
-145 121 90 103 153
-146 27 171 151 97
-147 58 157 92 153
-148 38 160 52 151
-149 156 161 108 21
-150 121 3 84 162
-151 110 102 146 148
-152 133 57 101 106
-153 145 147 107 120
-154 157 7 117 173
-155 56 167 139 8
-156 176 50 149 95
-157 154 147 40 86
-158 66 100 116 41
-159 68 71 118 53
-160 148 173 130 164
-161 15 149 29 128
-162 94 150 172 163
-163 91 118 162 142
-164 134 167 179 160
-165 1 135 95 120
-166 177 168 37 93
-167 1 155 53 164
-168 45 166 68 130
-169 99 104 117 131
-170 122 92 180 172
-171 57 146 4 93
-172 134 170 61 162
-173 154 123 70 160
-174 66 177 108 87
-175 132 105 118 98
-176 144 156 105 106
-177 166 104 107 174
-178 11 33 123 140
-179 114 129 76 164
-180 143 36 170 9
0