[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 32 ] =
UG(ATD[180,51]).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {30, 31}, {160, 161}, {146, 147}, {116, 117}, {38, 39}, {137,
139}, {153, 155}, {1, 2}, {149, 150}, {80, 83}, {81, 82}, {1, 5}, {146, 150},
{3, 7}, {2, 6}, {89, 93}, {35, 37}, {154, 156}, {56, 62}, {1, 6}, {146, 149},
{144, 151}, {80, 88}, {162, 170}, {145, 152}, {32, 43}, {2, 14}, {20, 24}, {4,
8}, {3, 15}, {35, 46}, {67, 77}, {134, 136}, {68, 75}, {129, 142}, {1, 17},
{142, 158}, {76, 92}, {3, 18}, {74, 91}, {75, 90}, {72, 90}, {140, 158}, {41,
58}, {134, 149}, {4, 16}, {5, 17}, {106, 126}, {7, 18}, {167, 178}, {104, 125},
{4, 19}, {131, 148}, {66, 85}, {73, 81}, {34, 56}, {39, 61}, {38, 60}, {37, 63},
{8, 19}, {141, 150}, {13, 22}, {12, 23}, {73, 82}, {33, 61}, {35, 63}, {34, 62},
{99, 127}, {9, 20}, {11, 22}, {72, 85}, {79, 82}, {10, 21}, {139, 148}, {129,
158}, {65, 94}, {20, 52}, {148, 180}, {22, 55}, {27, 58}, {25, 56}, {23, 54},
{71, 102}, {30, 60}, {135, 165}, {71, 101}, {8, 43}, {145, 178}, {31, 60}, {26,
57}, {22, 53}, {16, 51}, {12, 47}, {9, 44}, {11, 46}, {10, 47}, {29, 59}, {88,
126}, {10, 45}, {138, 173}, {19, 52}, {78, 105}, {81, 118}, {8, 32}, {137, 161},
{72, 96}, {140, 165}, {143, 166}, {95, 117}, {139, 161}, {135, 173}, {95, 116},
{31, 51}, {159, 179}, {5, 40}, {142, 163}, {7, 42}, {70, 107}, {6, 41}, {79,
96}, {85, 122}, {147, 163}, {3, 50}, {146, 163}, {27, 41}, {156, 174}, {72,
122}, {88, 106}, {2, 49}, {152, 171}, {154, 174}, {155, 175}, {151, 162}, {83,
101}, {157, 171}, {153, 175}, {145, 167}, {89, 111}, {4, 51}, {131, 180}, {18,
37}, {78, 121}, {28, 36}, {154, 162}, {68, 125}, {141, 180}, {69, 124}, {70,
127}, {12, 54}, {145, 171}, {21, 47}, {13, 55}, {90, 96}, {64, 123}, {158, 165},
{156, 167}, {67, 120}, {69, 126}, {87, 108}, {30, 34}, {9, 52}, {151, 170},
{143, 178}, {15, 50}, {13, 48}, {84, 105}, {95, 98}, {11, 53}, {14, 49}, {94,
97}, {56, 120}, {60, 124}, {59, 123}, {57, 121}, {17, 83}, {38, 100}, {23, 84},
{39, 100}, {37, 102}, {12, 73}, {48, 119}, {61, 122}, {39, 110}, {40, 98}, {59,
113}, {42, 96}, {54, 120}, {55, 121}, {32, 111}, {34, 112}, {53, 103}, {35,
113}, {61, 110}, {36, 112}, {44, 116}, {46, 118}, {45, 117}, {42, 115}, {38,
124}, {45, 119}, {40, 114}, {6, 93}, {48, 107}, {33, 122}, {16, 76}, {25, 70},
{46, 113}, {36, 123}, {26, 69}, {25, 120}, {26, 121}, {36, 64}, {42, 79}, {26,
124}, {47, 73}, {21, 125}, {15, 100}, {28, 112}, {29, 113}, {14, 99}, {30, 112},
{50, 92}, {58, 85}, {28, 109}, {24, 106}, {25, 107}, {20, 103}, {29, 110}, {7,
115}, {41, 93}, {18, 102}, {17, 101}, {33, 84}, {54, 67}, {5, 114}, {40, 95},
{27, 108}, {57, 65}, {58, 66}, {55, 78}, {13, 119}, {62, 66}, {9, 116}, {21,
104}, {11, 118}, {23, 105}, {10, 117}, {24, 103}, {28, 155}, {59, 177}, {19,
152}, {44, 160}, {44, 161}, {16, 130}, {62, 170}, {49, 167}, {14, 153}, {63,
166}, {50, 168}, {51, 169}, {45, 179}, {15, 174}, {33, 128}, {53, 147}, {57,
144}, {52, 152}, {29, 176}, {49, 156}, {63, 143}, {27, 168}, {48, 133}, {31,
169}, {24, 175}, {43, 144}, {43, 151}, {32, 159}, {75, 138}, {97, 160}, {86,
149}, {111, 172}, {76, 136}, {119, 179}, {108, 168}, {65, 132}, {106, 175}, {68,
130}, {71, 129}, {71, 128}, {115, 180}, {77, 138}, {75, 130}, {87, 157}, {123,
177}, {100, 174}, {79, 132}, {104, 163}, {125, 177}, {78, 131}, {76, 130}, {91,
148}, {127, 176}, {98, 173}, {74, 154}, {86, 134}, {87, 135}, {89, 137}, {90,
138}, {91, 139}, {65, 144}, {84, 128}, {92, 136}, {93, 137}, {80, 133}, {82,
132}, {83, 133}, {126, 166}, {86, 143}, {94, 132}, {64, 157}, {109, 179}, {110,
176}, {118, 169}, {77, 173}, {77, 172}, {69, 166}, {86, 178}, {114, 150}, {98,
135}, {101, 128}, {104, 142}, {97, 134}, {102, 129}, {66, 170}, {74, 162}, {97,
136}, {105, 131}, {64, 171}, {74, 164}, {107, 133}, {67, 172}, {99, 140}, {111,
159}, {108, 157}, {87, 165}, {109, 159}, {127, 140}, {80, 164}, {92, 168}, {103,
147}, {68, 177}, {89, 172}, {70, 176}, {109, 155}, {81, 169}, {99, 153}, {88,
164}, {94, 160}, {115, 141}, {91, 164}, {114, 141} }>;
(II) A more general form is to represent the graph as the orbit of {30, 31}
under the group generated by the following permutations:
a: (2, 17)(4, 73)(5, 6)(7, 50)(8, 47)(9, 67)(10, 32)(11, 30)(12, 19)(13, 28)(14,
83)(15, 18)(16, 82)(20, 120)(21, 43)(22, 112)(23, 152)(24, 25)(26, 59)(27,
141)(29, 69)(31, 118)(33, 178)(34, 53)(35, 38)(36, 55)(37, 100)(39, 63)(40,
93)(41, 114)(42, 92)(44, 77)(45, 159)(46, 60)(48, 155)(49, 101)(51, 81)(52,
54)(56, 103)(57, 177)(58, 150)(61, 143)(62, 147)(64, 78)(65, 68)(66, 146)(70,
106)(71, 156)(72, 134)(74, 158)(75, 94)(76, 79)(80, 99)(84, 145)(85, 149)(86,
122)(87, 148)(88, 127)(89, 95)(90, 97)(91, 165)(96, 136)(98, 137)(102, 174)(104,
151)(105, 171)(107, 175)(108, 180)(109, 119)(110, 166)(111, 117)(113, 124)(115,
168)(116, 172)(121, 123)(125, 144)(126, 176)(128, 167)(129, 154)(130, 132)(131,
157)(133, 153)(135, 139)(138, 160)(140, 164)(142, 162)(161, 173)(163, 170) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 6)(3, 9, 25)(4, 12, 35)(5, 14, 41)(7, 20, 56)(8, 23, 63)(10, 29,
76)(11, 31, 82)(13, 38, 94)(15, 44, 107)(16, 47, 113)(17, 49, 93)(18, 52,
120)(19, 54, 37)(21, 59, 130)(22, 60, 132)(24, 62, 115)(26, 57, 121)(27, 40,
99)(28, 72, 146)(30, 79, 53)(32, 84, 143)(33, 86, 159)(34, 42, 103)(36, 90,
163)(39, 97, 119)(43, 105, 166)(45, 110, 136)(46, 51, 73)(48, 100, 160)(50, 116,
70)(55, 124, 65)(58, 114, 153)(61, 134, 179)(64, 138, 142)(66, 141, 175)(67,
102, 152)(68, 125, 177)(69, 144, 78)(71, 145, 172)(74, 91, 164)(75, 104,
123)(77, 129, 171)(80, 154, 139)(81, 118, 169)(83, 156, 137)(85, 150, 155)(87,
135, 165)(88, 162, 148)(89, 101, 167)(92, 117, 176)(95, 127, 168)(96, 147,
112)(98, 140, 108)(106, 170, 180)(109, 122, 149)(111, 128, 178)(126, 151,
131)(133, 174, 161)(157, 173, 158)
c: (2, 6)(4, 30)(5, 17)(7, 18)(8, 112)(9, 25)(10, 13)(11, 73)(12, 53)(14,
93)(15, 50)(16, 60)(19, 34)(20, 120)(21, 55)(22, 47)(23, 147)(24, 67)(26,
68)(27, 156)(28, 32)(29, 94)(31, 51)(33, 149)(35, 79)(36, 43)(37, 42)(38,
76)(39, 136)(40, 83)(41, 49)(44, 70)(45, 119)(46, 82)(48, 117)(52, 56)(54,
103)(57, 177)(58, 167)(59, 65)(61, 134)(62, 152)(63, 96)(64, 151)(66, 145)(69,
75)(71, 141)(72, 143)(74, 87)(77, 106)(78, 104)(80, 98)(81, 118)(84, 146)(85,
178)(86, 122)(88, 173)(89, 153)(90, 166)(91, 165)(92, 100)(95, 133)(97, 110)(99,
137)(101, 114)(102, 115)(105, 163)(107, 116)(108, 154)(109, 159)(111, 155)(113,
132)(121, 125)(123, 144)(124, 130)(126, 138)(127, 161)(128, 150)(129, 180)(131,
142)(135, 164)(139, 140)(148, 158)(157, 162)(160, 176)(168, 174)(170, 171)(172,
175)
C4[ 180, 32 ]
180
-1 2 5 6 17
-2 1 14 49 6
-3 15 50 7 18
-4 16 51 8 19
-5 1 114 17 40
-6 1 2 93 41
-7 3 115 18 42
-8 4 19 32 43
-9 44 116 52 20
-10 45 47 117 21
-11 22 46 118 53
-12 23 47 73 54
-13 22 55 48 119
-14 99 2 49 153
-15 100 3 50 174
-16 4 51 130 76
-17 1 101 5 83
-18 3 102 37 7
-19 4 8 52 152
-20 24 103 52 9
-21 47 125 104 10
-22 11 55 13 53
-23 12 105 84 54
-24 103 106 20 175
-25 56 70 107 120
-26 121 57 69 124
-27 58 168 41 108
-28 155 112 36 109
-29 110 176 113 59
-30 34 112 60 31
-31 169 60 51 30
-32 111 159 8 43
-33 122 61 84 128
-34 56 112 62 30
-35 46 113 37 63
-36 112 123 28 64
-37 35 102 18 63
-38 100 124 60 39
-39 110 100 38 61
-40 114 5 95 98
-41 58 27 93 6
-42 79 115 7 96
-43 144 8 151 32
-44 116 160 161 9
-45 179 117 119 10
-46 11 35 113 118
-47 12 73 10 21
-48 133 13 107 119
-49 2 156 167 14
-50 3 168 15 92
-51 4 169 16 31
-52 19 9 20 152
-53 11 22 103 147
-54 12 23 67 120
-55 22 121 78 13
-56 34 25 62 120
-57 121 144 26 65
-58 66 27 41 85
-59 177 123 113 29
-60 124 38 30 31
-61 33 110 122 39
-62 66 34 56 170
-63 143 166 35 37
-64 123 36 157 171
-65 132 144 57 94
-66 58 170 62 85
-67 77 172 54 120
-68 177 125 75 130
-69 166 124 26 126
-70 176 25 127 107
-71 101 102 128 129
-72 122 90 85 96
-73 12 47 81 82
-74 154 91 162 164
-75 68 90 138 130
-76 92 136 16 130
-77 67 138 172 173
-78 55 121 105 131
-79 132 82 96 42
-80 88 133 83 164
-81 169 82 73 118
-82 132 79 81 73
-83 133 101 80 17
-84 33 23 105 128
-85 66 122 58 72
-86 143 134 178 149
-87 165 135 157 108
-88 80 126 106 164
-89 111 93 137 172
-90 72 138 96 75
-91 148 139 74 164
-92 168 136 50 76
-93 89 137 6 41
-94 132 160 97 65
-95 116 40 117 98
-96 79 90 72 42
-97 134 136 94 160
-98 135 40 95 173
-99 14 127 140 153
-100 15 38 39 174
-101 71 17 83 128
-102 37 71 18 129
-103 24 147 20 53
-104 125 163 21 142
-105 23 78 84 131
-106 88 24 126 175
-107 133 25 48 70
-108 157 168 27 87
-109 155 179 159 28
-110 176 39 61 29
-111 89 159 172 32
-112 34 36 28 30
-113 35 46 59 29
-114 5 40 150 141
-115 180 7 42 141
-116 44 95 117 9
-117 45 116 95 10
-118 11 46 81 169
-119 45 13 179 48
-120 56 67 25 54
-121 55 78 57 26
-122 33 61 72 85
-123 177 36 59 64
-124 69 26 38 60
-125 177 68 104 21
-126 88 166 69 106
-127 99 176 70 140
-128 33 101 71 84
-129 102 158 71 142
-130 68 16 75 76
-131 78 180 148 105
-132 79 82 94 65
-133 80 48 83 107
-134 136 149 86 97
-135 165 173 87 98
-136 134 92 97 76
-137 89 93 139 161
-138 77 90 173 75
-139 91 137 148 161
-140 99 165 158 127
-141 114 180 115 150
-142 158 104 129 163
-143 166 178 63 86
-144 57 151 43 65
-145 167 178 171 152
-146 147 149 150 163
-147 146 103 53 163
-148 91 180 139 131
-149 134 146 150 86
-150 146 114 149 141
-151 144 170 162 43
-152 145 171 19 52
-153 99 155 14 175
-154 156 74 162 174
-155 28 109 153 175
-156 154 167 49 174
-157 171 64 108 87
-158 165 129 140 142
-159 111 179 32 109
-160 44 94 161 97
-161 44 137 160 139
-162 154 170 74 151
-163 146 147 104 142
-164 88 80 91 74
-165 135 158 140 87
-166 143 69 126 63
-167 145 156 178 49
-168 92 27 50 108
-169 81 51 118 31
-170 66 62 151 162
-171 145 157 64 152
-172 77 67 89 111
-173 77 135 138 98
-174 154 100 156 15
-175 155 24 106 153
-176 110 70 127 29
-177 68 123 59 125
-178 143 145 167 86
-179 45 159 119 109
-180 115 148 141 131
0