C4graphGraph forms for C4 [ 180, 33 ] = UG(ATD[180,53])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 180, 33 ] = UG(ATD[180,53]).

(I) Following is a form readable by MAGMA:

g:=Graph<180|{ {32, 33}, {156, 157}, {150, 151}, {148, 149}, {40, 41}, {76, 78}, {128, 130}, {125, 127}, {1, 2}, {176, 179}, {60, 63}, {29, 30}, {17, 18}, {1, 5}, {155, 159}, {153, 157}, {3, 7}, {2, 6}, {91, 95}, {114, 118}, {115, 119}, {49, 52}, {177, 180}, {51, 54}, {81, 84}, {83, 86}, {113, 116}, {48, 54}, {65, 71}, {75, 77}, {50, 53}, {82, 85}, {134, 142}, {19, 26}, {20, 30}, {67, 73}, {82, 88}, {84, 94}, {18, 25}, {163, 168}, {160, 171}, {151, 156}, {2, 14}, {4, 8}, {3, 15}, {86, 90}, {23, 26}, {38, 43}, {33, 47}, {161, 175}, {147, 157}, {6, 9}, {20, 27}, {80, 95}, {108, 124}, {130, 146}, {79, 94}, {143, 158}, {105, 120}, {3, 17}, {136, 154}, {69, 87}, {67, 81}, {140, 159}, {4, 16}, {7, 19}, {6, 18}, {5, 17}, {13, 24}, {140, 153}, {64, 87}, {139, 156}, {65, 88}, {136, 145}, {134, 159}, {32, 58}, {174, 180}, {33, 59}, {12, 23}, {69, 94}, {7, 27}, {142, 146}, {133, 153}, {35, 63}, {10, 22}, {9, 21}, {8, 20}, {138, 151}, {11, 21}, {173, 179}, {129, 158}, {28, 60}, {29, 61}, {83, 115}, {26, 59}, {31, 62}, {74, 107}, {77, 108}, {20, 54}, {147, 177}, {21, 55}, {93, 127}, {8, 43}, {25, 58}, {16, 51}, {12, 47}, {76, 104}, {148, 176}, {78, 106}, {9, 44}, {11, 46}, {18, 52}, {19, 53}, {10, 45}, {68, 99}, {94, 121}, {66, 106}, {75, 99}, {85, 125}, {86, 126}, {74, 99}, {155, 178}, {152, 177}, {135, 174}, {129, 168}, {82, 123}, {80, 122}, {138, 160}, {133, 175}, {25, 50}, {137, 162}, {5, 41}, {135, 171}, {130, 174}, {21, 57}, {92, 112}, {7, 42}, {22, 56}, {132, 170}, {79, 96}, {25, 40}, {147, 162}, {29, 44}, {147, 161}, {148, 166}, {1, 50}, {28, 40}, {155, 175}, {152, 172}, {75, 127}, {23, 34}, {24, 45}, {81, 100}, {150, 161}, {11, 51}, {68, 124}, {67, 123}, {66, 122}, {91, 99}, {95, 103}, {31, 38}, {158, 167}, {71, 126}, {85, 108}, {78, 116}, {151, 173}, {145, 171}, {10, 49}, {70, 125}, {77, 118}, {89, 98}, {91, 96}, {73, 117}, {88, 100}, {13, 48}, {15, 50}, {154, 164}, {14, 49}, {149, 170}, {143, 176}, {84, 107}, {48, 114}, {59, 121}, {58, 120}, {48, 115}, {55, 116}, {15, 75}, {62, 122}, {32, 101}, {52, 113}, {6, 78}, {39, 111}, {38, 110}, {9, 64}, {36, 109}, {34, 107}, {2, 73}, {56, 117}, {35, 108}, {57, 118}, {36, 116}, {46, 127}, {23, 69}, {46, 124}, {36, 118}, {33, 115}, {26, 72}, {59, 111}, {17, 68}, {61, 104}, {54, 110}, {57, 97}, {42, 112}, {45, 119}, {46, 114}, {44, 113}, {22, 72}, {61, 98}, {56, 89}, {36, 64}, {45, 73}, {37, 65}, {39, 66}, {11, 109}, {16, 119}, {13, 101}, {53, 92}, {14, 100}, {60, 87}, {58, 86}, {30, 112}, {1, 113}, {22, 102}, {53, 68}, {55, 69}, {27, 104}, {16, 101}, {28, 105}, {4, 114}, {31, 105}, {29, 106}, {52, 67}, {63, 70}, {41, 83}, {43, 81}, {5, 120}, {35, 93}, {57, 71}, {56, 70}, {51, 77}, {24, 103}, {37, 90}, {39, 165}, {32, 163}, {13, 137}, {19, 149}, {38, 160}, {37, 163}, {34, 164}, {3, 132}, {40, 160}, {4, 141}, {41, 163}, {47, 165}, {42, 161}, {43, 164}, {35, 179}, {14, 154}, {37, 178}, {62, 166}, {8, 145}, {27, 133}, {60, 157}, {15, 172}, {12, 169}, {12, 170}, {42, 140}, {39, 128}, {24, 177}, {34, 139}, {55, 156}, {44, 128}, {62, 144}, {28, 173}, {31, 174}, {61, 143}, {63, 138}, {49, 137}, {30, 167}, {10, 176}, {47, 146}, {87, 150}, {90, 158}, {111, 169}, {97, 166}, {80, 152}, {70, 143}, {98, 168}, {64, 139}, {74, 129}, {72, 132}, {76, 128}, {96, 172}, {101, 169}, {65, 140}, {79, 129}, {124, 172}, {125, 173}, {122, 171}, {74, 152}, {80, 130}, {97, 178}, {121, 170}, {119, 162}, {126, 168}, {71, 144}, {92, 132}, {90, 131}, {92, 133}, {85, 142}, {93, 134}, {84, 136}, {109, 178}, {98, 131}, {123, 154}, {117, 148}, {102, 135}, {111, 142}, {100, 134}, {96, 131}, {110, 141}, {123, 159}, {104, 141}, {126, 155}, {97, 135}, {110, 136}, {107, 131}, {89, 179}, {76, 167}, {79, 164}, {72, 166}, {91, 180}, {103, 150}, {120, 138}, {121, 139}, {102, 149}, {66, 180}, {102, 144}, {82, 165}, {88, 175}, {93, 165}, {105, 145}, {106, 146}, {83, 169}, {117, 137}, {95, 162}, {109, 144}, {112, 141}, {89, 167}, {103, 153} }>;

(II) A more general form is to represent the graph as the orbit of {32, 33} under the group generated by the following permutations:

a: (1, 2, 73, 117, 56, 70, 63, 138, 120, 5)(3, 44, 100, 24, 166, 98, 127, 87, 38, 32)(4, 12, 112, 146, 140, 80, 71, 74, 118, 34)(6, 67, 137, 22, 143, 35, 151, 105, 41, 50)(7, 128, 88, 177, 97, 131, 46, 69, 110, 33)(8, 169, 92, 106, 159, 95, 144, 129, 77, 139)(9, 81, 13, 72, 61, 93, 150, 31, 163, 15)(10, 176, 179, 173, 28, 40, 25, 18, 52, 49)(11, 94, 54, 59, 27, 39, 175, 180, 178, 96)(14, 45, 148, 89, 125, 60, 160, 58, 17, 113)(16, 170, 30, 142, 153, 122, 126, 99, 36, 164)(19, 76, 82, 147, 135, 90, 124, 55, 136, 115)(20, 111, 133, 66, 155, 91, 109, 79, 51, 121)(21, 84, 48, 26, 104, 165, 161, 174, 37, 172)(23, 141, 47, 42, 130, 65, 152, 57, 107, 114)(29, 134, 103, 62, 168, 75, 64, 43, 101, 132)(53, 78, 123, 162, 102, 158, 108, 156, 145, 83)(68, 116, 154, 119, 149, 167, 85, 157, 171, 86)
b: (2, 113)(3, 40)(5, 50)(6, 52)(7, 160)(8, 141)(9, 49)(10, 64)(11, 13)(12, 125)(14, 44)(15, 41)(16, 114)(17, 25)(19, 138)(20, 110)(21, 137)(22, 87)(23, 70)(24, 109)(26, 63)(27, 38)(28, 132)(29, 154)(30, 136)(31, 133)(32, 124)(33, 108)(34, 143)(35, 59)(36, 45)(37, 152)(39, 134)(42, 171)(43, 104)(46, 101)(47, 85)(48, 51)(53, 120)(55, 117)(56, 69)(57, 162)(58, 68)(60, 72)(61, 164)(62, 153)(65, 80)(66, 159)(67, 78)(71, 95)(73, 116)(74, 90)(75, 83)(76, 81)(77, 115)(79, 98)(82, 146)(84, 167)(86, 99)(88, 130)(89, 94)(91, 126)(92, 105)(93, 111)(96, 168)(97, 147)(100, 128)(102, 150)(103, 144)(106, 123)(107, 158)(112, 145)(118, 119)(121, 179)(122, 140)(127, 169)(129, 131)(135, 161)(139, 176)(142, 165)(148, 156)(149, 151)(155, 180)(157, 166)(163, 172)(170, 173)(174, 175)(177, 178)
c: (2, 50)(3, 49)(5, 113)(6, 25)(7, 137)(8, 114)(9, 40)(10, 132)(11, 38)(12, 143)(13, 27)(14, 15)(16, 141)(17, 52)(19, 117)(20, 48)(21, 160)(22, 72)(23, 70)(24, 133)(26, 56)(28, 64)(29, 83)(30, 115)(31, 109)(32, 76)(33, 167)(34, 125)(35, 94)(36, 105)(37, 130)(39, 168)(41, 44)(42, 162)(43, 46)(45, 92)(47, 158)(51, 110)(53, 73)(55, 138)(57, 171)(58, 78)(59, 89)(60, 87)(61, 169)(62, 144)(63, 69)(65, 80)(66, 126)(67, 68)(71, 122)(74, 82)(75, 154)(77, 136)(79, 93)(81, 124)(84, 108)(85, 107)(86, 106)(88, 152)(90, 146)(91, 159)(95, 140)(96, 134)(97, 135)(98, 111)(99, 123)(100, 172)(101, 104)(102, 166)(103, 153)(112, 119)(116, 120)(118, 145)(121, 179)(127, 164)(128, 163)(129, 165)(131, 142)(139, 173)(147, 161)(148, 149)(150, 157)(151, 156)(155, 180)(170, 176)(174, 178)(175, 177)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 180, 33 ]
180
-1 2 113 5 50
-2 1 14 6 73
-3 132 15 17 7
-4 114 16 8 141
-5 1 17 41 120
-6 78 2 18 9
-7 3 27 19 42
-8 145 4 20 43
-9 44 6 64 21
-10 22 176 45 49
-11 46 51 21 109
-12 23 47 169 170
-13 24 101 48 137
-14 154 100 2 49
-15 3 50 172 75
-16 101 4 51 119
-17 68 3 5 18
-18 25 6 17 52
-19 26 149 7 53
-20 27 8 30 54
-21 11 55 57 9
-22 56 102 72 10
-23 12 34 69 26
-24 45 177 13 103
-25 58 50 18 40
-26 23 59 72 19
-27 133 104 7 20
-28 60 105 40 173
-29 44 61 106 30
-30 112 167 29 20
-31 38 105 62 174
-32 33 101 58 163
-33 47 59 115 32
-34 23 139 107 164
-35 179 93 63 108
-36 116 118 64 109
-37 90 178 163 65
-38 110 160 31 43
-39 66 165 111 128
-40 25 28 160 41
-41 5 83 40 163
-42 112 7 161 140
-43 81 38 8 164
-44 113 29 128 9
-45 24 73 119 10
-46 11 124 114 127
-47 33 165 12 146
-48 13 114 115 54
-49 14 137 52 10
-50 1 25 15 53
-51 11 77 16 54
-52 67 113 49 18
-53 68 92 50 19
-54 110 48 51 20
-55 156 69 116 21
-56 22 89 70 117
-57 71 118 97 21
-58 25 86 32 120
-59 33 121 111 26
-60 157 28 63 87
-61 143 104 29 98
-62 122 144 166 31
-63 35 70 60 138
-64 36 139 9 87
-65 88 37 71 140
-66 122 180 39 106
-67 123 81 73 52
-68 99 124 17 53
-69 55 23 94 87
-70 143 56 125 63
-71 144 57 126 65
-72 22 132 166 26
-73 45 67 2 117
-74 99 107 129 152
-75 77 99 15 127
-76 78 167 104 128
-77 51 118 75 108
-78 6 116 106 76
-79 94 96 129 164
-80 122 95 130 152
-81 67 100 84 43
-82 88 165 123 85
-83 169 115 41 86
-84 81 136 94 107
-85 125 82 108 142
-86 90 58 126 83
-87 69 60 150 64
-88 100 82 65 175
-89 56 167 179 98
-90 37 158 86 131
-91 99 180 95 96
-92 132 133 112 53
-93 165 35 134 127
-94 121 79 69 84
-95 80 91 103 162
-96 79 91 172 131
-97 166 57 178 135
-98 89 168 61 131
-99 68 91 74 75
-100 88 134 14 81
-101 13 169 16 32
-102 22 144 135 149
-103 24 95 150 153
-104 27 61 141 76
-105 145 28 31 120
-106 66 78 146 29
-107 34 84 74 131
-108 77 35 124 85
-109 11 144 178 36
-110 136 38 141 54
-111 59 169 39 142
-112 92 30 42 141
-113 44 1 116 52
-114 46 4 48 118
-115 33 48 83 119
-116 55 78 36 113
-117 56 137 148 73
-118 77 57 36 114
-119 45 16 115 162
-120 58 5 105 138
-121 59 170 94 139
-122 66 80 171 62
-123 154 67 82 159
-124 46 68 172 108
-125 70 127 85 173
-126 155 168 71 86
-127 46 125 93 75
-128 44 39 130 76
-129 79 168 158 74
-130 80 146 128 174
-131 90 96 107 98
-132 3 92 170 72
-133 92 27 153 175
-134 100 93 159 142
-135 102 171 97 174
-136 110 154 145 84
-137 13 49 117 162
-138 160 63 151 120
-139 121 34 156 64
-140 159 42 65 153
-141 110 112 4 104
-142 111 134 146 85
-143 176 70 158 61
-144 102 71 62 109
-145 136 105 171 8
-146 47 106 130 142
-147 177 157 161 162
-148 176 166 149 117
-149 102 148 170 19
-150 103 161 151 87
-151 156 138 150 173
-152 177 80 172 74
-153 133 157 103 140
-154 123 14 136 164
-155 178 126 159 175
-156 55 157 139 151
-157 156 147 60 153
-158 143 90 167 129
-159 155 123 134 140
-160 38 138 171 40
-161 147 150 42 175
-162 147 137 95 119
-163 168 37 41 32
-164 154 34 79 43
-165 47 82 93 39
-166 148 72 62 97
-167 89 158 30 76
-168 126 129 163 98
-169 12 111 101 83
-170 121 132 12 149
-171 122 145 135 160
-172 124 15 96 152
-173 179 125 28 151
-174 135 180 31 130
-175 88 133 155 161
-176 143 179 148 10
-177 24 147 180 152
-178 155 37 97 109
-179 176 89 35 173
-180 66 177 91 174
0

**************