C4graphGraph forms for C4 [ 180, 34 ] = UG(ATD[180,55])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 180, 34 ] = UG(ATD[180,55]).

(I) Following is a form readable by MAGMA:

g:=Graph<180|{ {32, 33}, {104, 105}, {80, 82}, {81, 83}, {1, 2}, {177, 178}, {168, 171}, {136, 139}, {1, 5}, {152, 156}, {144, 148}, {3, 7}, {2, 6}, {122, 127}, {138, 143}, {168, 174}, {19, 27}, {20, 28}, {80, 89}, {166, 175}, {144, 153}, {54, 60}, {116, 126}, {100, 110}, {167, 172}, {4, 8}, {85, 89}, {96, 108}, {2, 15}, {150, 155}, {116, 121}, {81, 92}, {32, 46}, {6, 9}, {17, 30}, {139, 155}, {3, 18}, {45, 60}, {44, 61}, {13, 28}, {75, 90}, {137, 155}, {3, 16}, {160, 179}, {32, 51}, {9, 26}, {7, 19}, {4, 17}, {161, 180}, {143, 154}, {140, 153}, {13, 24}, {66, 87}, {138, 156}, {5, 18}, {167, 176}, {135, 144}, {134, 145}, {14, 25}, {71, 80}, {72, 95}, {74, 93}, {10, 18}, {43, 49}, {77, 87}, {99, 121}, {6, 29}, {130, 153}, {12, 23}, {8, 20}, {129, 157}, {9, 21}, {11, 22}, {172, 177}, {169, 180}, {40, 53}, {34, 63}, {106, 119}, {173, 179}, {33, 62}, {136, 151}, {21, 53}, {142, 174}, {132, 164}, {22, 55}, {28, 61}, {26, 59}, {24, 57}, {81, 112}, {77, 111}, {147, 177}, {141, 175}, {140, 174}, {16, 51}, {25, 58}, {10, 46}, {18, 54}, {11, 47}, {88, 124}, {8, 45}, {128, 165}, {17, 52}, {64, 101}, {93, 123}, {27, 60}, {88, 127}, {70, 110}, {12, 37}, {26, 51}, {66, 107}, {78, 103}, {85, 124}, {86, 127}, {87, 126}, {154, 176}, {7, 44}, {31, 52}, {86, 125}, {30, 50}, {158, 178}, {137, 165}, {75, 103}, {6, 43}, {5, 42}, {157, 178}, {23, 56}, {84, 123}, {14, 62}, {72, 121}, {79, 126}, {67, 112}, {68, 119}, {73, 122}, {85, 102}, {67, 118}, {151, 162}, {150, 160}, {19, 36}, {157, 170}, {156, 171}, {145, 166}, {10, 50}, {12, 52}, {11, 51}, {94, 103}, {83, 105}, {24, 35}, {151, 172}, {144, 172}, {157, 161}, {13, 48}, {24, 37}, {15, 50}, {69, 120}, {79, 114}, {148, 170}, {149, 171}, {14, 49}, {76, 115}, {78, 113}, {93, 98}, {25, 89}, {52, 116}, {45, 109}, {48, 113}, {9, 75}, {40, 107}, {49, 114}, {44, 111}, {33, 101}, {35, 103}, {34, 102}, {39, 98}, {43, 110}, {41, 108}, {42, 109}, {63, 117}, {37, 104}, {39, 106}, {16, 95}, {60, 115}, {38, 105}, {35, 115}, {15, 94}, {19, 66}, {34, 112}, {41, 123}, {31, 74}, {36, 113}, {20, 76}, {27, 67}, {30, 71}, {54, 106}, {57, 100}, {12, 82}, {25, 70}, {47, 112}, {34, 65}, {55, 84}, {38, 69}, {35, 64}, {38, 66}, {39, 67}, {36, 65}, {40, 78}, {53, 83}, {11, 99}, {22, 127}, {55, 94}, {59, 81}, {56, 83}, {40, 68}, {41, 69}, {56, 85}, {57, 84}, {54, 88}, {38, 73}, {29, 109}, {58, 74}, {57, 73}, {56, 72}, {55, 71}, {32, 80}, {30, 110}, {31, 109}, {27, 104}, {53, 70}, {20, 96}, {22, 98}, {21, 97}, {26, 111}, {4, 114}, {48, 70}, {23, 97}, {15, 121}, {3, 122}, {31, 100}, {33, 90}, {49, 77}, {61, 65}, {29, 99}, {50, 76}, {10, 139}, {48, 180}, {59, 179}, {46, 164}, {41, 165}, {42, 164}, {28, 140}, {4, 147}, {13, 154}, {14, 148}, {58, 160}, {61, 167}, {16, 142}, {62, 161}, {63, 159}, {47, 140}, {5, 160}, {62, 155}, {23, 177}, {1, 166}, {63, 152}, {45, 133}, {8, 161}, {1, 171}, {47, 133}, {42, 135}, {2, 173}, {39, 136}, {7, 168}, {46, 159}, {44, 158}, {43, 152}, {36, 146}, {29, 170}, {58, 141}, {17, 169}, {21, 175}, {37, 158}, {59, 132}, {69, 132}, {90, 152}, {102, 165}, {96, 164}, {65, 132}, {76, 137}, {79, 138}, {102, 163}, {68, 130}, {68, 131}, {71, 128}, {120, 176}, {72, 129}, {88, 145}, {94, 151}, {108, 166}, {122, 176}, {77, 134}, {89, 146}, {98, 169}, {84, 153}, {91, 150}, {95, 146}, {73, 135}, {91, 149}, {78, 129}, {92, 147}, {120, 169}, {125, 175}, {86, 133}, {87, 131}, {114, 167}, {125, 168}, {64, 150}, {123, 173}, {118, 174}, {90, 128}, {91, 129}, {92, 134}, {118, 173}, {104, 180}, {126, 162}, {79, 146}, {92, 130}, {82, 141}, {101, 133}, {117, 149}, {116, 149}, {64, 162}, {111, 141}, {96, 130}, {101, 135}, {107, 136}, {124, 159}, {108, 143}, {100, 131}, {74, 163}, {117, 158}, {95, 179}, {113, 156}, {97, 142}, {82, 162}, {115, 131}, {117, 134}, {124, 143}, {120, 139}, {86, 163}, {93, 170}, {91, 163}, {105, 145}, {75, 178}, {119, 142}, {106, 147}, {97, 154}, {99, 159}, {119, 138}, {125, 128}, {107, 148}, {118, 137} }>;

(II) A more general form is to represent the graph as the orbit of {32, 33} under the group generated by the following permutations:

a: (2, 166)(3, 91)(5, 171)(6, 108)(7, 150)(8, 114)(9, 41)(10, 117)(11, 85)(12, 39)(13, 148)(14, 28)(15, 145)(16, 163)(17, 147)(18, 149)(19, 64)(20, 49)(21, 123)(22, 56)(23, 98)(24, 107)(25, 140)(26, 165)(27, 162)(29, 143)(30, 92)(31, 119)(32, 34)(33, 65)(35, 66)(36, 101)(37, 136)(38, 103)(40, 57)(42, 156)(43, 96)(44, 155)(45, 79)(46, 63)(47, 89)(48, 144)(50, 134)(51, 102)(52, 106)(53, 84)(54, 116)(55, 83)(58, 174)(59, 128)(60, 126)(61, 62)(67, 82)(68, 100)(69, 75)(70, 153)(71, 81)(72, 127)(73, 78)(74, 142)(76, 77)(80, 112)(86, 95)(87, 115)(88, 121)(90, 132)(93, 97)(94, 105)(99, 124)(104, 151)(109, 138)(110, 130)(111, 137)(113, 135)(118, 141)(120, 178)(122, 129)(125, 179)(133, 146)(139, 158)(152, 164)(154, 170)(157, 176)(160, 168)(161, 167)(169, 177)(172, 180)(173, 175)
b: (1, 2, 6, 9, 26, 51, 32, 80, 89, 85, 102, 163, 91, 149, 171)(3, 10, 30, 70, 83, 112, 133, 64, 126, 138, 108, 123, 170, 178, 44)(4, 13, 38, 39, 8, 24, 66, 106, 20, 57, 107, 147, 28, 73, 136)(5, 15, 43, 21, 59, 11, 33, 82, 146, 124, 165, 74, 129, 117, 168)(7, 18, 50, 110, 53, 81, 47, 101, 162, 79, 143, 41, 93, 157, 158)(12, 36, 88, 137, 31, 78, 134, 174, 42, 94, 49, 97, 132, 22, 62)(14, 23, 65, 127, 155, 52, 113, 145, 118, 109, 103, 77, 142, 164, 55)(16, 46, 71, 25, 56, 34, 86, 150, 116, 156, 166, 173, 29, 75, 111)(17, 48, 105, 67, 45, 35, 87, 119, 96, 84, 148, 177, 61, 122, 139)(19, 54, 76, 100, 40, 92, 140, 135, 151, 114, 154, 69, 98, 161, 37)(27, 60, 115, 131, 68, 130, 153, 144, 172, 167, 176, 120, 169, 180, 104)(58, 72, 63, 125, 160, 121, 152, 175, 179, 99, 90, 141, 95, 159, 128)
c: (2, 5)(3, 9)(6, 18)(7, 21)(8, 17)(10, 29)(11, 32)(12, 28)(13, 37)(14, 39)(15, 42)(16, 26)(19, 53)(20, 52)(22, 33)(23, 61)(25, 67)(27, 70)(30, 45)(31, 76)(34, 85)(35, 57)(36, 83)(38, 78)(40, 66)(41, 91)(43, 54)(44, 97)(46, 99)(47, 80)(48, 104)(49, 106)(50, 109)(55, 101)(56, 65)(58, 118)(59, 95)(60, 110)(62, 98)(63, 124)(64, 84)(68, 87)(69, 129)(71, 133)(72, 132)(73, 103)(74, 137)(75, 122)(77, 119)(79, 92)(81, 146)(82, 140)(86, 128)(88, 152)(89, 112)(90, 127)(93, 155)(94, 135)(96, 116)(100, 115)(105, 113)(108, 149)(111, 142)(114, 147)(117, 143)(120, 157)(121, 164)(123, 150)(126, 130)(134, 138)(136, 148)(139, 170)(141, 174)(144, 151)(145, 156)(153, 162)(154, 158)(160, 173)(161, 169)(163, 165)(166, 171)(167, 177)(168, 175)(176, 178)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 180, 34 ]
180
-1 166 2 5 171
-2 1 15 6 173
-3 122 16 7 18
-4 114 147 17 8
-5 1 160 18 42
-6 2 29 9 43
-7 44 3 168 19
-8 45 4 161 20
-9 26 6 75 21
-10 46 50 18 139
-11 22 99 47 51
-12 23 37 82 52
-13 154 24 48 28
-14 25 49 148 62
-15 121 2 50 94
-16 3 51 95 142
-17 4 169 30 52
-18 3 5 10 54
-19 66 36 27 7
-20 28 8 96 76
-21 9 53 97 175
-22 11 55 127 98
-23 12 56 177 97
-24 13 35 57 37
-25 89 14 58 70
-26 111 59 51 9
-27 67 60 104 19
-28 13 61 140 20
-29 99 170 6 109
-30 110 71 17 50
-31 100 52 74 109
-32 33 46 80 51
-33 90 101 62 32
-34 112 102 63 65
-35 24 103 115 64
-36 113 146 19 65
-37 12 24 158 104
-38 66 69 105 73
-39 67 136 106 98
-40 78 68 107 53
-41 165 123 69 108
-42 135 5 109 164
-43 110 49 6 152
-44 111 158 61 7
-45 133 60 8 109
-46 159 10 32 164
-47 11 133 112 140
-48 13 113 70 180
-49 77 14 114 43
-50 15 30 10 76
-51 11 26 16 32
-52 12 17 116 31
-53 70 83 40 21
-54 88 60 18 106
-55 22 71 94 84
-56 23 72 83 85
-57 100 24 73 84
-58 25 160 74 141
-59 132 179 26 81
-60 45 27 115 54
-61 44 167 28 65
-62 33 155 14 161
-63 34 159 117 152
-64 35 101 150 162
-65 132 34 36 61
-66 38 19 107 87
-67 112 27 39 118
-68 40 119 130 131
-69 132 38 41 120
-70 110 25 48 53
-71 55 80 128 30
-72 121 56 95 129
-73 122 57 135 38
-74 58 93 31 163
-75 90 178 103 9
-76 115 137 50 20
-77 111 134 49 87
-78 113 103 40 129
-79 146 114 126 138
-80 89 71 82 32
-81 112 59 92 83
-82 12 80 162 141
-83 56 81 105 53
-84 55 57 123 153
-85 56 89 102 124
-86 133 125 127 163
-87 66 77 126 131
-88 145 124 127 54
-89 25 80 146 85
-90 33 128 75 152
-91 149 150 129 163
-92 134 81 147 130
-93 123 170 74 98
-94 55 15 103 151
-95 146 179 16 72
-96 20 108 130 164
-97 154 23 21 142
-98 22 169 93 39
-99 11 121 159 29
-100 110 57 31 131
-101 33 133 135 64
-102 165 34 85 163
-103 78 35 94 75
-104 37 180 27 105
-105 145 38 104 83
-106 147 39 119 54
-107 66 136 148 40
-108 143 166 41 96
-109 45 29 31 42
-110 100 70 30 43
-111 44 77 26 141
-112 34 67 47 81
-113 78 156 36 48
-114 79 167 4 49
-115 35 60 76 131
-116 121 126 149 52
-117 134 158 149 63
-118 67 137 173 174
-119 68 138 106 142
-120 176 69 169 139
-121 99 15 72 116
-122 176 3 127 73
-123 93 84 41 173
-124 88 143 159 85
-125 168 128 86 175
-126 79 116 162 87
-127 22 88 122 86
-128 165 90 125 71
-129 78 91 157 72
-130 68 92 96 153
-131 100 68 115 87
-132 69 59 65 164
-133 45 101 47 86
-134 77 145 92 117
-135 144 101 73 42
-136 39 139 107 151
-137 165 155 118 76
-138 143 79 156 119
-139 155 136 10 120
-140 47 28 174 153
-141 111 58 82 175
-142 16 97 119 174
-143 154 124 138 108
-144 135 148 172 153
-145 88 166 134 105
-146 89 79 36 95
-147 177 4 92 106
-148 144 14 170 107
-149 91 116 171 117
-150 155 91 160 64
-151 136 94 172 162
-152 90 156 63 43
-153 144 84 140 130
-154 143 176 13 97
-155 137 62 139 150
-156 113 138 171 152
-157 178 170 161 129
-158 44 178 37 117
-159 99 46 124 63
-160 58 179 5 150
-161 157 180 62 8
-162 82 126 151 64
-163 91 102 74 86
-164 132 46 96 42
-165 102 137 128 41
-166 1 145 108 175
-167 176 114 61 172
-168 125 171 7 174
-169 180 17 98 120
-170 157 93 148 29
-171 1 156 168 149
-172 144 177 167 151
-173 2 123 179 118
-174 168 118 140 142
-175 166 125 141 21
-176 154 122 167 120
-177 23 178 147 172
-178 177 157 158 75
-179 59 160 95 173
-180 48 169 104 161
0

**************