[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 37 ] =
L(F120A).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {2, 3}, {178, 179}, {176, 177}, {172, 173}, {170, 171}, {90, 91},
{78, 79}, {76, 77}, {72, 73}, {68, 69}, {66, 67}, {4, 5}, {22, 23}, {30, 31},
{32, 33}, {46, 47}, {52, 53}, {54, 55}, {58, 59}, {60, 61}, {100, 101}, {102,
103}, {110, 111}, {120, 121}, {134, 135}, {136, 137}, {148, 149}, {150, 151},
{152, 153}, {154, 155}, {158, 159}, {160, 161}, {164, 165}, {166, 167}, {1, 3},
{172, 174}, {169, 171}, {21, 23}, {109, 111}, {157, 159}, {160, 162}, {1, 2},
{173, 174}, {169, 170}, {97, 98}, {93, 94}, {85, 86}, {64, 67}, {49, 50}, {105,
106}, {109, 110}, {113, 114}, {121, 122}, {129, 130}, {141, 142}, {145, 146},
{157, 158}, {161, 162}, {1, 5}, {74, 78}, {2, 6}, {3, 7}, {16, 20}, {17, 21},
{24, 28}, {25, 29}, {26, 30}, {1, 4}, {170, 175}, {10, 12}, {178, 180}, {90,
92}, {11, 13}, {99, 101}, {113, 119}, {163, 165}, {33, 38}, {179, 180}, {91,
92}, {99, 100}, {107, 108}, {115, 116}, {131, 132}, {163, 164}, {4, 12}, {85,
93}, {5, 13}, {6, 14}, {7, 15}, {34, 42}, {35, 43}, {36, 44}, {37, 45}, {32,
41}, {2, 8}, {96, 106}, {70, 76}, {69, 79}, {66, 72}, {3, 9}, {130, 137}, {167,
172}, {146, 153}, {165, 174}, {48, 60}, {51, 63}, {161, 173}, {22, 27}, {81,
92}, {149, 152}, {151, 154}, {4, 10}, {5, 11}, {6, 8}, {7, 9}, {98, 108}, {116,
122}, {166, 168}, {49, 62}, {87, 88}, {119, 120}, {135, 136}, {144, 159}, {167,
168}, {37, 53}, {143, 159}, {10, 27}, {74, 91}, {12, 29}, {14, 31}, {35, 50},
{111, 126}, {11, 24}, {13, 30}, {6, 18}, {7, 19}, {46, 58}, {100, 112}, {12,
25}, {64, 86}, {136, 158}, {11, 28}, {13, 26}, {42, 61}, {137, 158}, {8, 16},
{171, 179}, {9, 17}, {110, 118}, {133, 157}, {47, 54}, {77, 84}, {65, 88}, {143,
150}, {142, 148}, {73, 82}, {8, 20}, {9, 21}, {10, 22}, {14, 18}, {15, 19}, {38,
59}, {41, 55}, {175, 177}, {132, 155}, {175, 176}, {143, 144}, {84, 116}, {147,
179}, {92, 125}, {130, 163}, {139, 170}, {140, 173}, {24, 58}, {129, 163}, {132,
166}, {26, 62}, {27, 63}, {139, 175}, {25, 60}, {75, 110}, {131, 166}, {14, 40},
{89, 127}, {65, 103}, {15, 41}, {30, 56}, {134, 160}, {138, 172}, {31, 56}, {71,
96}, {135, 160}, {27, 51}, {80, 120}, {77, 101}, {28, 52}, {25, 48}, {80, 121},
{76, 101}, {155, 177}, {26, 49}, {29, 54}, {154, 177}, {81, 125}, {82, 126},
{133, 169}, {152, 180}, {71, 106}, {138, 167}, {140, 161}, {153, 180}, {23, 57},
{91, 117}, {84, 122}, {15, 32}, {22, 57}, {23, 39}, {146, 162}, {70, 119}, {83,
98}, {16, 34}, {17, 35}, {20, 38}, {21, 39}, {29, 47}, {128, 178}, {150, 164},
{156, 174}, {145, 162}, {151, 164}, {157, 169}, {20, 33}, {94, 107}, {18, 36},
{19, 37}, {24, 46}, {31, 40}, {70, 113}, {67, 123}, {68, 124}, {147, 171}, {66,
123}, {95, 102}, {69, 124}, {156, 165}, {16, 42}, {89, 99}, {73, 115}, {17, 43},
{72, 115}, {78, 114}, {148, 168}, {75, 118}, {82, 111}, {79, 114}, {141, 176},
{149, 168}, {18, 44}, {19, 45}, {142, 176}, {74, 117}, {95, 96}, {88, 103}, {83,
108}, {46, 104}, {47, 104}, {62, 112}, {51, 99}, {61, 109}, {60, 109}, {56,
107}, {59, 97}, {62, 100}, {58, 97}, {28, 65}, {55, 105}, {54, 105}, {57, 102},
{34, 66}, {36, 70}, {37, 71}, {40, 74}, {41, 75}, {45, 79}, {48, 85}, {50, 87},
{40, 78}, {43, 77}, {49, 87}, {56, 94}, {57, 95}, {35, 68}, {36, 76}, {45, 69},
{63, 86}, {34, 72}, {51, 89}, {59, 81}, {44, 64}, {48, 93}, {39, 73}, {61, 83},
{52, 90}, {44, 67}, {53, 90}, {32, 80}, {33, 80}, {53, 71}, {39, 82}, {52, 65},
{50, 68}, {38, 81}, {42, 83}, {55, 75}, {43, 84}, {63, 64}, {127, 178}, {88,
139}, {86, 138}, {95, 131}, {93, 129}, {87, 139}, {85, 138}, {94, 129}, {89,
134}, {104, 136}, {115, 147}, {118, 150}, {108, 141}, {117, 148}, {96, 131},
{123, 152}, {97, 133}, {125, 153}, {105, 140}, {126, 155}, {102, 128}, {106,
140}, {107, 141}, {119, 145}, {124, 154}, {98, 133}, {103, 128}, {116, 147},
{120, 145}, {121, 144}, {122, 144}, {124, 151}, {113, 156}, {114, 156}, {123,
149}, {104, 135}, {125, 146}, {112, 130}, {112, 137}, {118, 143}, {127, 134},
{126, 132}, {117, 142}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 3)(4, 5)(6, 9)(7, 8)(10, 13)(11, 12)(14, 21)(15, 20)(16, 19)(17, 18)(22,
30)(23, 31)(24, 29)(25, 28)(26, 27)(32, 33)(34, 45)(35, 44)(36, 43)(37, 42)(38,
41)(39, 40)(46, 47)(48, 65)(49, 63)(50, 64)(51, 62)(52, 60)(53, 61)(54, 58)(55,
59)(56, 57)(66, 69)(67, 68)(70, 84)(71, 83)(72, 79)(73, 78)(74, 82)(75, 81)(76,
77)(85, 88)(86, 87)(89, 112)(90, 109)(91, 111)(92, 110)(93, 103)(94, 102)(95,
107)(96, 108)(97, 105)(98, 106)(99, 100)(113, 116)(114, 115)(117, 126)(118,
125)(119, 122)(120, 121)(123, 124)(127, 130)(128, 129)(131, 141)(132, 142)(133,
140)(134, 137)(135, 136)(138, 139)(143, 146)(144, 145)(147, 156)(148, 155)(149,
154)(150, 153)(151, 152)(157, 161)(158, 160)(159, 162)(163, 178)(164, 180)(165,
179)(166, 176)(167, 175)(168, 177)(169, 173)(170, 172)(171, 174) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 5)(6, 10)(7, 11)(8, 12)(9, 13)(14, 22)(15, 24)(16, 25)(17, 26)(18,
27)(19, 28)(20, 29)(21, 30)(23, 31)(32, 46)(33, 47)(34, 48)(35, 49)(36, 51)(37,
52)(38, 54)(39, 56)(40, 57)(41, 58)(42, 60)(43, 62)(44, 63)(45, 65)(55, 59)(66,
85)(67, 86)(68, 87)(69, 88)(70, 89)(71, 90)(72, 93)(73, 94)(74, 95)(75, 97)(76,
99)(77, 100)(78, 102)(79, 103)(80, 104)(81, 105)(82, 107)(83, 109)(84, 112)(91,
96)(92, 106)(98, 110)(108, 111)(113, 127)(114, 128)(115, 129)(116, 130)(117,
131)(118, 133)(119, 134)(120, 135)(121, 136)(122, 137)(123, 138)(124, 139)(125,
140)(126, 141)(132, 142)(143, 157)(144, 158)(145, 160)(146, 161)(147, 163)(148,
166)(149, 167)(150, 169)(151, 170)(152, 172)(153, 173)(154, 175)(155, 176)(156,
178)(164, 171)(165, 179)(174, 180)
c: (1, 2)(4, 8)(5, 6)(7, 9)(10, 20)(11, 18)(12, 16)(13, 14)(15, 21)(17, 19)(22,
33)(23, 32)(24, 44)(25, 42)(26, 40)(27, 38)(28, 36)(29, 34)(30, 31)(35, 45)(37,
43)(39, 41)(46, 67)(47, 66)(48, 83)(49, 78)(50, 79)(51, 81)(52, 76)(53, 77)(54,
72)(55, 73)(57, 80)(58, 64)(59, 63)(60, 61)(62, 74)(65, 70)(68, 69)(71, 84)(75,
82)(85, 98)(86, 97)(87, 114)(88, 113)(89, 125)(90, 101)(91, 100)(92, 99)(93,
108)(94, 107)(95, 121)(96, 122)(102, 120)(103, 119)(104, 123)(105, 115)(106,
116)(110, 111)(112, 117)(118, 126)(127, 146)(128, 145)(129, 141)(130, 142)(131,
144)(132, 143)(133, 138)(134, 153)(135, 152)(136, 149)(137, 148)(139, 156)(140,
147)(150, 155)(151, 154)(157, 167)(158, 168)(159, 166)(160, 180)(161, 179)(162,
178)(163, 176)(164, 177)(165, 175)(169, 172)(170, 174)(171, 173)
C4[ 180, 37 ]
180
-1 2 3 4 5
-2 1 3 6 8
-3 1 2 7 9
-4 1 12 5 10
-5 11 1 13 4
-6 2 14 18 8
-7 3 15 19 9
-8 2 16 6 20
-9 3 17 7 21
-10 22 12 4 27
-11 13 24 5 28
-12 25 4 29 10
-13 11 26 5 30
-14 6 18 40 31
-15 7 19 41 32
-16 34 8 20 42
-17 35 9 21 43
-18 44 14 36 6
-19 45 15 37 7
-20 33 16 38 8
-21 23 17 39 9
-22 23 57 27 10
-23 22 57 39 21
-24 11 46 58 28
-25 12 48 60 29
-26 13 49 62 30
-27 22 51 63 10
-28 11 24 52 65
-29 12 25 47 54
-30 56 13 26 31
-31 56 14 40 30
-32 33 80 15 41
-33 80 38 20 32
-34 66 16 72 42
-35 68 17 50 43
-36 44 70 18 76
-37 45 71 19 53
-38 33 59 81 20
-39 23 82 73 21
-40 78 14 74 31
-41 55 15 75 32
-42 34 16 61 83
-43 77 35 17 84
-44 67 36 18 64
-45 79 69 37 19
-46 24 47 58 104
-47 46 104 29 54
-48 25 60 93 85
-49 26 50 62 87
-50 35 68 49 87
-51 99 89 27 63
-52 90 28 53 65
-53 90 37 71 52
-54 55 47 105 29
-55 105 41 75 54
-56 94 30 107 31
-57 22 23 102 95
-58 24 46 59 97
-59 58 81 38 97
-60 25 48 61 109
-61 60 83 42 109
-62 100 112 26 49
-63 27 51 64 86
-64 44 67 63 86
-65 88 103 28 52
-66 34 67 123 72
-67 44 66 123 64
-68 35 69 124 50
-69 45 68 79 124
-70 36 113 119 76
-71 37 106 96 53
-72 66 34 115 73
-73 82 115 39 72
-74 78 91 40 117
-75 55 110 41 118
-76 77 101 36 70
-77 101 84 43 76
-78 79 114 40 74
-79 45 78 69 114
-80 33 121 32 120
-81 59 92 125 38
-82 111 126 39 73
-83 61 42 108 98
-84 77 122 116 43
-85 48 93 138 86
-86 138 63 85 64
-87 88 49 50 139
-88 103 139 65 87
-89 99 134 127 51
-90 91 92 52 53
-91 90 92 117 74
-92 90 91 81 125
-93 48 94 85 129
-94 56 93 107 129
-95 57 102 96 131
-96 71 95 106 131
-97 133 58 59 98
-98 133 83 97 108
-99 89 100 101 51
-100 99 101 112 62
-101 77 99 100 76
-102 57 103 95 128
-103 88 102 128 65
-104 46 47 135 136
-105 55 106 140 54
-106 71 105 96 140
-107 56 94 108 141
-108 83 107 141 98
-109 110 111 60 61
-110 111 118 75 109
-111 110 82 126 109
-112 100 137 62 130
-113 156 70 114 119
-114 78 79 156 113
-115 147 72 116 73
-116 122 147 115 84
-117 91 148 74 142
-118 110 143 150 75
-119 145 113 70 120
-120 121 145 80 119
-121 122 144 80 120
-122 121 144 116 84
-123 66 67 149 152
-124 154 68 69 151
-125 146 81 92 153
-126 132 111 155 82
-127 89 134 178 128
-128 178 102 103 127
-129 93 94 130 163
-130 112 137 129 163
-131 132 166 95 96
-132 155 166 126 131
-133 157 169 97 98
-134 89 135 127 160
-135 134 136 104 160
-136 135 158 104 137
-137 112 136 158 130
-138 167 172 85 86
-139 88 170 87 175
-140 105 106 161 173
-141 176 107 108 142
-142 176 148 117 141
-143 144 159 150 118
-144 121 143 122 159
-145 146 162 119 120
-146 145 125 162 153
-147 179 115 116 171
-148 168 149 117 142
-149 123 168 148 152
-150 143 118 151 164
-151 154 124 150 164
-152 123 180 149 153
-153 146 125 180 152
-154 155 177 124 151
-155 132 154 177 126
-156 165 113 114 174
-157 133 158 169 159
-158 157 136 137 159
-159 143 144 157 158
-160 134 135 161 162
-161 160 140 162 173
-162 145 146 160 161
-163 165 129 130 164
-164 165 150 151 163
-165 156 163 174 164
-166 132 167 168 131
-167 166 168 138 172
-168 166 167 148 149
-169 133 157 170 171
-170 169 171 139 175
-171 179 147 169 170
-172 167 138 173 174
-173 161 172 140 174
-174 165 156 172 173
-175 176 177 170 139
-176 177 141 142 175
-177 154 176 155 175
-178 179 180 127 128
-179 178 147 180 171
-180 178 179 152 153
0