C4graphGraph forms for C4 [ 180, 41 ] = UG(Rmap(360,345){6,4|10}_8)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 180, 41 ] = UG(Rmap(360,345){6,4|10}_8).

(I) Following is a form readable by MAGMA:

g:=Graph<180|{ {58, 59}, {134, 135}, {120, 121}, {90, 91}, {98, 99}, {1, 3}, {177, 179}, {173, 175}, {169, 171}, {141, 143}, {1, 2}, {176, 179}, {157, 158}, {77, 78}, {1, 5}, {129, 133}, {2, 7}, {169, 172}, {50, 55}, {3, 6}, {2, 4}, {178, 180}, {105, 111}, {8, 14}, {10, 13}, {179, 180}, {169, 174}, {153, 158}, {43, 44}, {3, 11}, {114, 122}, {1, 8}, {17, 24}, {7, 13}, {167, 173}, {164, 174}, {132, 142}, {37, 47}, {19, 25}, {17, 27}, {16, 26}, {4, 15}, {163, 175}, {4, 9}, {2, 12}, {131, 141}, {32, 46}, {20, 26}, {69, 75}, {5, 10}, {114, 125}, {113, 126}, {6, 9}, {12, 28}, {65, 81}, {70, 86}, {71, 87}, {72, 88}, {7, 22}, {110, 127}, {69, 84}, {3, 17}, {137, 155}, {132, 150}, {47, 61}, {45, 63}, {33, 51}, {32, 50}, {4, 23}, {161, 178}, {6, 21}, {70, 85}, {9, 29}, {11, 31}, {10, 30}, {5, 16}, {15, 25}, {131, 149}, {40, 62}, {39, 49}, {38, 48}, {34, 52}, {108, 123}, {132, 147}, {131, 148}, {103, 127}, {170, 178}, {136, 144}, {110, 118}, {11, 18}, {140, 149}, {8, 20}, {139, 151}, {128, 156}, {14, 18}, {5, 24}, {175, 178}, {109, 115}, {12, 19}, {175, 176}, {174, 177}, {172, 179}, {93, 125}, {130, 162}, {94, 126}, {95, 127}, {9, 40}, {23, 53}, {138, 168}, {74, 104}, {31, 60}, {134, 165}, {79, 108}, {13, 41}, {142, 170}, {15, 43}, {14, 42}, {11, 46}, {76, 105}, {78, 107}, {6, 32}, {7, 33}, {93, 123}, {10, 45}, {140, 171}, {77, 106}, {71, 111}, {156, 180}, {8, 34}, {136, 162}, {22, 60}, {19, 57}, {18, 56}, {140, 167}, {139, 166}, {12, 34}, {142, 160}, {31, 49}, {30, 48}, {24, 54}, {21, 59}, {20, 58}, {73, 103}, {16, 63}, {138, 165}, {135, 168}, {15, 62}, {89, 104}, {90, 107}, {92, 109}, {22, 36}, {29, 47}, {23, 37}, {14, 61}, {157, 174}, {148, 167}, {80, 101}, {17, 39}, {23, 33}, {21, 35}, {76, 122}, {91, 108}, {27, 35}, {158, 166}, {152, 160}, {28, 36}, {66, 123}, {89, 96}, {90, 99}, {13, 55}, {153, 163}, {147, 169}, {139, 177}, {138, 176}, {83, 104}, {143, 180}, {16, 44}, {156, 160}, {82, 110}, {150, 171}, {24, 38}, {153, 167}, {152, 166}, {71, 121}, {78, 112}, {56, 122}, {19, 80}, {25, 93}, {56, 124}, {39, 99}, {38, 98}, {37, 97}, {36, 96}, {26, 94}, {20, 81}, {50, 119}, {48, 117}, {22, 83}, {27, 93}, {21, 82}, {49, 118}, {51, 120}, {53, 121}, {41, 100}, {61, 112}, {63, 114}, {29, 82}, {41, 102}, {62, 113}, {26, 75}, {30, 79}, {28, 77}, {60, 109}, {44, 126}, {25, 74}, {29, 78}, {38, 115}, {48, 101}, {42, 124}, {43, 125}, {27, 76}, {36, 115}, {55, 111}, {18, 73}, {47, 116}, {39, 123}, {57, 100}, {52, 106}, {54, 105}, {34, 70}, {55, 83}, {60, 88}, {42, 79}, {32, 71}, {62, 89}, {40, 64}, {44, 68}, {43, 67}, {42, 66}, {41, 65}, {33, 72}, {46, 69}, {63, 84}, {37, 73}, {58, 86}, {57, 85}, {56, 84}, {59, 87}, {61, 81}, {45, 64}, {51, 94}, {40, 90}, {54, 68}, {51, 65}, {50, 64}, {46, 92}, {35, 80}, {45, 91}, {53, 67}, {52, 66}, {30, 102}, {31, 103}, {28, 101}, {35, 95}, {54, 146}, {57, 147}, {58, 148}, {53, 133}, {49, 137}, {52, 137}, {59, 134}, {106, 171}, {99, 161}, {104, 170}, {105, 170}, {86, 146}, {94, 154}, {96, 164}, {87, 146}, {119, 176}, {72, 128}, {84, 156}, {85, 157}, {86, 158}, {87, 159}, {120, 177}, {64, 138}, {110, 164}, {65, 139}, {68, 142}, {69, 143}, {92, 151}, {109, 166}, {73, 133}, {79, 130}, {92, 145}, {97, 172}, {66, 140}, {67, 141}, {98, 173}, {85, 133}, {117, 165}, {82, 131}, {88, 137}, {72, 154}, {113, 165}, {119, 162}, {80, 134}, {81, 135}, {118, 161}, {67, 155}, {117, 173}, {116, 172}, {74, 147}, {74, 144}, {114, 168}, {75, 145}, {83, 136}, {91, 128}, {116, 168}, {70, 155}, {68, 155}, {75, 148}, {119, 151}, {97, 128}, {116, 149}, {115, 146}, {102, 132}, {127, 157}, {100, 135}, {117, 150}, {124, 152}, {100, 129}, {124, 153}, {101, 130}, {120, 159}, {112, 151}, {125, 149}, {126, 150}, {77, 164}, {111, 129}, {113, 159}, {76, 163}, {103, 136}, {106, 154}, {97, 144}, {107, 154}, {112, 130}, {98, 145}, {121, 143}, {88, 160}, {89, 161}, {107, 145}, {118, 141}, {122, 129}, {95, 163}, {108, 144}, {95, 162}, {102, 152}, {96, 159} }>;

(II) A more general form is to represent the graph as the orbit of {58, 59} under the group generated by the following permutations:

a: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 13)(11, 15)(14, 19)(16, 22)(17, 23)(18, 25)(20, 28)(21, 29)(24, 33)(26, 36)(27, 37)(30, 41)(31, 43)(32, 40)(35, 47)(38, 51)(39, 53)(42, 57)(44, 60)(45, 55)(46, 62)(48, 65)(49, 67)(50, 64)(52, 70)(54, 72)(56, 74)(58, 77)(59, 78)(61, 80)(63, 83)(66, 85)(68, 88)(69, 89)(71, 90)(73, 93)(75, 96)(76, 97)(79, 100)(81, 101)(84, 104)(86, 106)(87, 107)(91, 111)(92, 113)(94, 115)(95, 116)(98, 120)(99, 121)(103, 125)(105, 128)(108, 129)(109, 126)(110, 131)(112, 134)(114, 136)(117, 139)(118, 141)(119, 138)(122, 144)(123, 133)(124, 147)(127, 149)(130, 135)(132, 152)(137, 155)(140, 157)(142, 160)(143, 161)(145, 159)(146, 154)(148, 164)(150, 166)(151, 165)(153, 169)(156, 170)(158, 171)(162, 168)(163, 172)(167, 174)(173, 177)(175, 179)(178, 180)
b: (2, 5)(3, 8)(4, 16)(6, 20)(7, 10)(9, 26)(11, 14)(12, 24)(15, 44)(17, 34)(19, 54)(21, 58)(22, 30)(23, 63)(25, 68)(27, 70)(28, 38)(29, 75)(31, 42)(32, 81)(33, 45)(35, 86)(36, 48)(37, 84)(39, 52)(40, 94)(41, 55)(46, 61)(47, 69)(49, 66)(50, 65)(51, 64)(53, 114)(56, 73)(57, 105)(60, 79)(62, 126)(67, 125)(71, 135)(72, 91)(74, 142)(76, 85)(77, 98)(78, 145)(80, 146)(82, 148)(83, 102)(87, 134)(88, 108)(89, 150)(90, 154)(92, 112)(93, 155)(95, 158)(96, 117)(97, 156)(99, 106)(100, 111)(101, 115)(103, 124)(104, 132)(109, 130)(110, 167)(116, 143)(118, 140)(119, 139)(120, 138)(121, 168)(122, 133)(123, 137)(127, 153)(136, 152)(141, 149)(144, 160)(147, 170)(157, 163)(159, 165)(161, 171)(162, 166)(164, 173)(169, 178)(172, 180)(174, 175)(176, 177)
c: (2, 5, 8, 3)(4, 10, 20, 11)(6, 7, 16, 14)(9, 13, 26, 18)(12, 24, 34, 17)(15, 30, 58, 31)(19, 38, 70, 39)(21, 22, 44, 42)(23, 45, 81, 46)(25, 48, 86, 49)(27, 28, 54, 52)(29, 55, 94, 56)(32, 33, 63, 61)(35, 36, 68, 66)(37, 64, 65, 69)(40, 41, 75, 73)(43, 79, 59, 60)(47, 50, 51, 84)(53, 91, 135, 92)(57, 98, 85, 99)(62, 102, 148, 103)(67, 108, 134, 109)(71, 72, 114, 112)(74, 117, 158, 118)(76, 77, 105, 106)(78, 111, 154, 122)(80, 115, 155, 123)(82, 83, 126, 124)(87, 88, 125, 130)(89, 132, 167, 127)(90, 100, 145, 133)(93, 101, 146, 137)(95, 96, 142, 140)(97, 138, 139, 143)(104, 150, 153, 110)(107, 129)(113, 152, 131, 136)(116, 119, 120, 156)(121, 128, 168, 151)(141, 144, 165, 166)(147, 173, 157, 161)(149, 162, 159, 160)(163, 164, 170, 171)(169, 175, 174, 178)(172, 176, 177, 180)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 180, 41 ]
180
-1 2 3 5 8
-2 1 12 4 7
-3 11 1 6 17
-4 23 2 15 9
-5 1 24 16 10
-6 3 9 21 32
-7 22 33 2 13
-8 1 34 14 20
-9 4 6 29 40
-10 45 13 5 30
-11 46 3 18 31
-12 34 2 28 19
-13 55 7 41 10
-14 61 18 8 42
-15 25 4 62 43
-16 44 26 5 63
-17 24 3 27 39
-18 11 56 14 73
-19 12 57 25 80
-20 58 26 81 8
-21 35 59 82 6
-22 36 60 83 7
-23 33 4 37 53
-24 5 38 17 54
-25 15 93 19 74
-26 16 94 20 75
-27 35 93 17 76
-28 77 12 101 36
-29 78 47 82 9
-30 79 102 48 10
-31 11 103 49 60
-32 46 71 6 50
-33 23 72 7 51
-34 12 70 8 52
-35 80 27 95 21
-36 22 115 28 96
-37 23 47 73 97
-38 24 48 115 98
-39 99 123 49 17
-40 90 62 9 64
-41 100 13 102 65
-42 66 79 14 124
-43 44 67 15 125
-44 68 16 126 43
-45 91 63 64 10
-46 11 69 92 32
-47 37 61 116 29
-48 101 38 117 30
-49 137 39 118 31
-50 55 64 119 32
-51 33 94 65 120
-52 66 34 137 106
-53 121 23 67 133
-54 24 68 146 105
-55 111 13 50 83
-56 122 124 18 84
-57 100 147 19 85
-58 59 148 20 86
-59 134 58 21 87
-60 22 88 31 109
-61 112 14 47 81
-62 89 113 15 40
-63 45 114 16 84
-64 45 50 138 40
-65 81 51 139 41
-66 123 52 140 42
-67 155 53 141 43
-68 44 155 54 142
-69 143 46 84 75
-70 34 155 85 86
-71 121 111 32 87
-72 33 88 154 128
-73 133 37 103 18
-74 144 25 147 104
-75 145 69 26 148
-76 122 27 105 163
-77 78 28 106 164
-78 77 112 29 107
-79 30 42 108 130
-80 35 101 134 19
-81 135 61 20 65
-82 110 29 21 131
-83 22 55 136 104
-84 56 156 69 63
-85 133 57 157 70
-86 58 146 70 158
-87 146 59 71 159
-88 60 137 72 160
-89 104 62 161 96
-90 99 91 40 107
-91 45 90 128 108
-92 46 145 151 109
-93 123 25 125 27
-94 154 26 126 51
-95 35 127 162 163
-96 89 36 159 164
-97 144 37 128 172
-98 99 145 38 173
-99 90 39 161 98
-100 57 135 41 129
-101 80 48 28 130
-102 132 30 41 152
-103 136 127 73 31
-104 89 170 83 74
-105 111 170 54 76
-106 77 154 171 52
-107 154 78 90 145
-108 144 79 123 91
-109 166 92 60 115
-110 82 127 118 164
-111 55 71 105 129
-112 78 61 151 130
-113 165 126 159 62
-114 122 168 125 63
-115 36 146 38 109
-116 47 168 149 172
-117 165 48 150 173
-118 110 49 161 141
-119 176 50 151 162
-120 121 177 159 51
-121 143 71 53 120
-122 56 114 129 76
-123 66 93 39 108
-124 56 42 152 153
-125 114 93 149 43
-126 44 113 94 150
-127 110 157 103 95
-128 156 91 72 97
-129 122 111 133 100
-130 79 101 112 162
-131 82 148 149 141
-132 102 147 150 142
-133 73 85 129 53
-134 165 80 135 59
-135 100 134 168 81
-136 144 103 83 162
-137 88 155 49 52
-138 165 176 168 64
-139 166 177 151 65
-140 66 167 149 171
-141 143 67 118 131
-142 132 68 170 160
-143 121 69 180 141
-144 136 74 97 108
-145 92 107 75 98
-146 115 86 54 87
-147 132 57 169 74
-148 167 58 75 131
-149 125 116 140 131
-150 132 126 171 117
-151 112 92 139 119
-152 166 102 124 160
-153 167 124 158 163
-154 72 94 106 107
-155 67 68 70 137
-156 180 160 84 128
-157 158 127 85 174
-158 166 157 86 153
-159 113 96 87 120
-160 88 156 152 142
-161 99 89 178 118
-162 136 95 119 130
-163 95 76 153 175
-164 77 110 96 174
-165 134 113 138 117
-166 158 139 152 109
-167 148 140 173 153
-168 135 114 116 138
-169 147 171 172 174
-170 178 104 105 142
-171 169 106 150 140
-172 179 169 116 97
-173 167 117 98 175
-174 177 157 169 164
-175 176 178 173 163
-176 179 138 119 175
-177 179 139 174 120
-178 180 170 161 175
-179 176 177 180 172
-180 143 156 178 179
0

**************