[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 44 ] =
SDD(DW(15,3)).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {78, 92}, {78, 93}, {78, 91}, {71, 95}, {71, 103}, {70, 100},
{80, 114}, {76, 111}, {76, 102}, {70, 109}, {81, 122}, {78, 96}, {90, 116}, {71,
117}, {80, 99}, {70, 114}, {76, 116}, {74, 115}, {74, 119}, {81, 108}, {48,
112}, {32, 97}, {35, 98}, {56, 122}, {57, 125}, {34, 103}, {57, 124}, {56, 126},
{33, 102}, {50, 123}, {58, 113}, {32, 109}, {16, 94}, {37, 107}, {59, 117}, {57,
105}, {57, 104}, {56, 106}, {58, 105}, {10, 95}, {52, 97}, {55, 98}, {32, 118},
{52, 99}, {4, 92}, {35, 123}, {32, 120}, {6, 94}, {5, 93}, {47, 119}, {48, 104},
{52, 108}, {2, 91}, {36, 125}, {33, 120}, {47, 118}, {1, 91}, {39, 125}, {43,
113}, {34, 121}, {59, 96}, {1, 93}, {35, 127}, {55, 107}, {1, 92}, {34, 127},
{3, 94}, {2, 95}, {34, 124}, {2, 98}, {3, 99}, {1, 96}, {15, 110}, {12, 109},
{3, 97}, {6, 101}, {25, 122}, {20, 119}, {7, 100}, {19, 119}, {24, 124}, {19,
118}, {28, 121}, {27, 126}, {24, 125}, {21, 112}, {8, 110}, {9, 111}, {8, 111},
{25, 126}, {20, 115}, {58, 93}, {55, 95}, {2, 107}, {17, 120}, {7, 109}, {52,
94}, {11, 96}, {31, 116}, {18, 121}, {15, 100}, {4, 104}, {29, 113}, {28, 112},
{23, 123}, {22, 122}, {21, 121}, {6, 106}, {5, 105}, {48, 92}, {55, 91}, {8,
101}, {30, 115}, {18, 127}, {14, 99}, {12, 97}, {10, 103}, {18, 124}, {3, 108},
{13, 98}, {9, 102}, {24, 104}, {30, 110}, {15, 126}, {30, 111}, {26, 107}, {24,
105}, {13, 127}, {25, 106}, {4, 112}, {12, 120}, {5, 113}, {7, 114}, {27, 110},
{18, 103}, {16, 101}, {13, 123}, {17, 102}, {12, 118}, {22, 108}, {16, 106}, {8,
115}, {30, 101}, {14, 114}, {9, 116}, {11, 117}, {10, 117}, {27, 100}, {44,
173}, {11, 137}, {31, 157}, {43, 169}, {7, 132}, {14, 138}, {4, 130}, {6, 128},
{5, 131}, {37, 163}, {42, 172}, {53, 179}, {19, 148}, {15, 135}, {29, 149}, {25,
145}, {41, 160}, {46, 164}, {42, 161}, {45, 166}, {9, 133}, {23, 155}, {22,
154}, {10, 134}, {41, 165}, {20, 153}, {60, 177}, {38, 171}, {29, 147}, {44,
162}, {61, 178}, {16, 128}, {62, 174}, {28, 140}, {17, 129}, {17, 128}, {51,
162}, {51, 160}, {19, 135}, {31, 139}, {28, 136}, {26, 143}, {14, 152}, {62,
168}, {26, 130}, {60, 164}, {53, 173}, {21, 140}, {23, 142}, {54, 175}, {61,
167}, {63, 165}, {62, 164}, {13, 150}, {22, 141}, {51, 168}, {11, 151}, {27,
135}, {21, 136}, {61, 163}, {20, 139}, {63, 160}, {23, 136}, {46, 177}, {33,
129}, {33, 128}, {62, 159}, {39, 134}, {40, 137}, {49, 144}, {36, 134}, {37,
130}, {47, 135}, {54, 158}, {38, 143}, {50, 155}, {56, 145}, {37, 143}, {38,
140}, {54, 157}, {61, 150}, {60, 151}, {45, 129}, {59, 151}, {41, 132}, {46,
131}, {49, 156}, {53, 152}, {49, 159}, {63, 145}, {42, 133}, {44, 156}, {36,
149}, {39, 149}, {48, 130}, {59, 137}, {29, 169}, {36, 144}, {40, 156}, {31,
170}, {35, 150}, {39, 144}, {40, 159}, {38, 158}, {40, 144}, {41, 145}, {42,
146}, {43, 147}, {49, 137}, {53, 141}, {54, 142}, {26, 163}, {45, 148}, {46,
151}, {51, 138}, {58, 131}, {50, 136}, {47, 148}, {63, 132}, {50, 142}, {43,
149}, {44, 147}, {60, 131}, {45, 146}, {71, 134}, {74, 139}, {70, 132}, {72,
140}, {86, 146}, {75, 142}, {89, 159}, {72, 143}, {90, 157}, {80, 152}, {76,
133}, {82, 152}, {81, 154}, {85, 153}, {68, 138}, {79, 129}, {90, 139}, {69,
150}, {86, 133}, {74, 153}, {73, 156}, {75, 158}, {72, 158}, {77, 155}, {75,
157}, {65, 153}, {67, 155}, {66, 154}, {64, 154}, {80, 138}, {73, 147}, {79,
148}, {81, 141}, {79, 146}, {82, 141}, {83, 179}, {84, 180}, {82, 179}, {85,
180}, {67, 161}, {83, 177}, {69, 167}, {72, 171}, {87, 180}, {83, 176}, {67,
167}, {75, 175}, {73, 173}, {68, 160}, {64, 165}, {87, 178}, {68, 162}, {84,
178}, {69, 163}, {65, 166}, {77, 170}, {66, 165}, {88, 176}, {67, 170}, {88,
177}, {79, 166}, {77, 167}, {73, 162}, {88, 179}, {66, 174}, {77, 161}, {68,
168}, {64, 174}, {65, 175}, {64, 176}, {90, 170}, {88, 169}, {89, 168}, {66,
176}, {85, 166}, {65, 180}, {69, 178}, {89, 174}, {86, 161}, {84, 172}, {83,
169}, {86, 172}, {85, 175}, {87, 172}, {87, 171}, {89, 164}, {82, 173}, {84,
171} }>;
(II) A more general form is to represent the graph as the orbit of {78, 92}
under the group generated by the following permutations:
a: (65, 85) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (26, 37)
c: (24, 57)
d: (4, 48)
e: (45, 79)
f: (29, 43)
g: (2, 4)(3, 7)(5, 11)(6, 15)(9, 20)(10, 24)(13, 21)(16, 27)(17, 19)(22, 41)(28,
35)(29, 40)(33, 47)(38, 61)(42, 65)(43, 49)(48, 55)(51, 53)(52, 70)(54, 67)(57,
71)(58, 59)(62, 83)(63, 81)(68, 82)(69, 72)(74, 76)(75, 77)(85, 86)(88, 89)(91,
92)(93, 96)(94, 100)(95, 104)(97, 109)(98, 112)(99, 114)(101, 110)(102,
119)(103, 124)(105, 117)(106, 126)(107, 130)(108, 132)(111, 115)(113, 137)(116,
139)(118, 120)(121, 127)(122, 145)(123, 136)(125, 134)(128, 135)(129, 148)(131,
151)(133, 153)(138, 152)(140, 150)(141, 160)(142, 155)(143, 163)(144, 149)(146,
166)(147, 156)(154, 165)(157, 170)(158, 167)(159, 169)(161, 175)(162, 173)(164,
177)(168, 179)(171, 178)(172, 180)(174, 176)
h: (10, 71)
m: (17, 33)
n1: (9, 76)
a1: (8, 30)
b1: (83, 88)
c1: (5, 58)
d1: (25, 56)
e1: (84, 87)
f1: (15, 27)
g1: (11, 59)
h1: (64, 66)
m1: (54, 75)
n2: (3, 52)
a2: (41, 63)
b2: (20, 74)
c2: (53, 82)
d2: (7, 70)
e2: (44, 73)
f2: (40, 49)
g2: (42, 86)
h2: (22, 81)
m2: (61, 69)
n3: (18, 34)
a3: (51, 68)
b3: (2, 55)
c3: (62, 89)
d3: (12, 32)
e3: (13, 35)
f3: (14, 80)
g3: (46, 60)
h3: (21, 28)
m3: (19, 47)
n4: (38, 72)
a4: (1, 2)(3, 8)(4, 10)(5, 13)(7, 19)(9, 22)(11, 26)(12, 15)(14, 20)(17, 25)(18,
24)(21, 36)(23, 29)(27, 32)(28, 39)(30, 52)(31, 53)(33, 56)(34, 57)(35, 58)(37,
59)(38, 40)(41, 45)(42, 64)(43, 50)(44, 54)(46, 61)(47, 70)(48, 71)(49, 72)(51,
65)(55, 78)(60, 69)(62, 84)(63, 79)(66, 86)(67, 83)(68, 85)(73, 75)(74, 80)(76,
81)(77, 88)(82, 90)(87, 89)(92, 95)(93, 98)(94, 101)(96, 107)(97, 110)(99,
115)(100, 118)(102, 122)(103, 104)(105, 127)(106, 128)(108, 111)(109, 135)(112,
134)(113, 123)(114, 119)(116, 141)(117, 130)(120, 126)(121, 125)(129, 145)(131,
150)(132, 148)(133, 154)(136, 149)(137, 143)(138, 153)(139, 152)(140, 144)(142,
147)(146, 165)(151, 163)(155, 169)(156, 158)(157, 173)(159, 171)(160, 166)(161,
176)(162, 175)(164, 178)(167, 177)(168, 180)(170, 179)(172, 174)
b4: (2, 5)(3, 9)(4, 11)(6, 17)(7, 20)(8, 12)(10, 24)(13, 29)(14, 31)(15, 19)(16,
33)(18, 36)(21, 40)(22, 42)(23, 44)(25, 45)(26, 46)(27, 47)(28, 49)(30, 32)(34,
39)(35, 43)(37, 60)(38, 62)(41, 65)(48, 59)(50, 73)(51, 54)(52, 76)(53, 67)(55,
58)(56, 79)(57, 71)(61, 83)(63, 85)(64, 84)(66, 87)(68, 75)(69, 88)(70, 74)(72,
89)(77, 82)(80, 90)(81, 86)(91, 93)(92, 96)(94, 102)(95, 105)(97, 111)(98,
113)(99, 116)(100, 119)(101, 120)(103, 125)(104, 117)(106, 129)(107, 131)(108,
133)(109, 115)(110, 118)(112, 137)(114, 139)(121, 144)(122, 146)(123, 147)(124,
134)(126, 148)(127, 149)(130, 151)(132, 153)(136, 156)(138, 157)(140, 159)(141,
161)(142, 162)(143, 164)(145, 166)(150, 169)(152, 170)(154, 172)(155, 173)(158,
168)(160, 175)(163, 177)(165, 180)(167, 179)(171, 174)(176, 178)
c4: (36, 39)
d4: (23, 50)
e4: (67, 77)
f4: (31, 90)
C4[ 180, 44 ]
180
-1 91 92 93 96
-2 91 95 107 98
-3 99 94 97 108
-4 112 92 104 130
-5 113 93 105 131
-6 101 94 106 128
-7 132 100 114 109
-8 110 111 101 115
-9 111 133 102 116
-10 134 103 95 117
-11 137 117 96 151
-12 118 97 109 120
-13 123 127 150 98
-14 99 114 138 152
-15 110 100 135 126
-16 101 94 106 128
-17 102 128 129 120
-18 121 124 103 127
-19 135 148 118 119
-20 115 139 119 153
-21 121 112 136 140
-22 154 122 108 141
-23 155 123 136 142
-24 124 125 104 105
-25 122 145 126 106
-26 143 107 130 163
-27 110 100 135 126
-28 121 112 136 140
-29 113 147 169 149
-30 110 111 101 115
-31 157 170 116 139
-32 118 97 109 120
-33 102 128 129 120
-34 121 124 103 127
-35 123 127 150 98
-36 144 134 125 149
-37 143 107 130 163
-38 143 158 171 140
-39 144 134 125 149
-40 144 156 137 159
-41 132 165 145 160
-42 133 146 161 172
-43 113 147 169 149
-44 156 147 162 173
-45 166 146 148 129
-46 177 151 131 164
-47 135 148 118 119
-48 112 92 104 130
-49 144 156 137 159
-50 155 123 136 142
-51 168 138 160 162
-52 99 94 97 108
-53 179 173 141 152
-54 157 158 142 175
-55 91 95 107 98
-56 122 145 126 106
-57 124 125 104 105
-58 113 93 105 131
-59 137 117 96 151
-60 177 151 131 164
-61 167 178 150 163
-62 168 159 174 164
-63 132 165 145 160
-64 154 165 176 174
-65 166 180 153 175
-66 154 165 176 174
-67 155 167 170 161
-68 168 138 160 162
-69 167 178 150 163
-70 132 100 114 109
-71 134 103 95 117
-72 143 158 171 140
-73 156 147 162 173
-74 115 139 119 153
-75 157 158 142 175
-76 111 133 102 116
-77 155 167 170 161
-78 91 92 93 96
-79 166 146 148 129
-80 99 114 138 152
-81 154 122 108 141
-82 179 173 141 152
-83 176 177 179 169
-84 178 180 171 172
-85 166 180 153 175
-86 133 146 161 172
-87 178 180 171 172
-88 176 177 179 169
-89 168 159 174 164
-90 157 170 116 139
-91 55 1 78 2
-92 1 78 4 48
-93 1 78 58 5
-94 3 16 6 52
-95 55 2 71 10
-96 11 1 78 59
-97 12 3 52 32
-98 55 2 13 35
-99 3 14 80 52
-100 15 70 27 7
-101 16 6 8 30
-102 33 17 9 76
-103 34 71 18 10
-104 24 57 4 48
-105 24 57 58 5
-106 56 25 16 6
-107 55 2 26 37
-108 22 3 81 52
-109 12 70 7 32
-110 15 27 8 30
-111 8 30 9 76
-112 4 48 28 21
-113 58 5 29 43
-114 14 80 70 7
-115 8 30 74 20
-116 90 9 31 76
-117 11 59 71 10
-118 12 47 19 32
-119 47 19 74 20
-120 33 12 17 32
-121 34 28 18 21
-122 22 56 25 81
-123 23 13 35 50
-124 34 24 57 18
-125 24 57 36 39
-126 56 25 15 27
-127 34 13 35 18
-128 33 16 6 17
-129 33 45 79 17
-130 37 4 26 48
-131 46 58 5 60
-132 70 7 41 63
-133 9 42 86 76
-134 36 71 39 10
-135 47 15 27 19
-136 23 28 50 21
-137 11 59 49 40
-138 68 14 80 51
-139 90 74 20 31
-140 38 28 72 21
-141 22 81 82 53
-142 23 50 75 54
-143 26 37 38 72
-144 36 49 39 40
-145 56 25 41 63
-146 45 79 42 86
-147 44 29 73 43
-148 45 79 47 19
-149 36 39 29 43
-150 13 35 69 61
-151 11 46 59 60
-152 14 80 82 53
-153 74 85 20 65
-154 22 66 81 64
-155 77 23 67 50
-156 44 49 40 73
-157 90 31 75 54
-158 38 72 75 54
-159 89 49 40 62
-160 68 51 41 63
-161 77 67 42 86
-162 44 68 51 73
-163 69 26 37 61
-164 89 46 60 62
-165 66 41 63 64
-166 45 79 85 65
-167 77 67 69 61
-168 89 68 51 62
-169 88 83 29 43
-170 77 67 90 31
-171 38 72 84 87
-172 84 42 86 87
-173 44 82 73 53
-174 66 89 62 64
-175 85 75 54 65
-176 66 88 83 64
-177 88 46 60 83
-178 69 61 84 87
-179 88 82 83 53
-180 84 85 65 87
0