[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 46 ] =
XI(Rmap(90,27){3,10|10}_15).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {84, 95}, {71, 92}, {88, 121}, {64, 98}, {70, 100}, {73, 106},
{81, 117}, {82, 118}, {71, 96}, {75, 108}, {84, 124}, {72, 101}, {87, 121}, {89,
119}, {66, 109}, {85, 122}, {81, 101}, {70, 115}, {72, 113}, {87, 110}, {74,
112}, {64, 123}, {79, 116}, {72, 116}, {65, 124}, {67, 126}, {34, 99}, {50,
112}, {43, 104}, {62, 125}, {52, 113}, {41, 111}, {45, 107}, {53, 114}, {47,
103}, {62, 119}, {40, 99}, {57, 114}, {45, 97}, {36, 105}, {33, 111}, {20, 91},
{32, 111}, {36, 116}, {46, 126}, {33, 112}, {38, 119}, {35, 114}, {44, 125},
{59, 106}, {40, 122}, {41, 123}, {34, 113}, {37, 118}, {40, 123}, {41, 122},
{32, 117}, {42, 124}, {63, 105}, {55, 97}, {4, 92}, {6, 94}, {5, 93}, {60, 100},
{2, 91}, {33, 120}, {47, 118}, {1, 91}, {4, 95}, {1, 93}, {1, 92}, {61, 96}, {3,
94}, {2, 95}, {35, 125}, {39, 121}, {2, 98}, {7, 103}, {3, 99}, {1, 96}, {30,
127}, {25, 120}, {3, 97}, {26, 120}, {9, 107}, {7, 100}, {28, 127}, {16, 115},
{11, 104}, {19, 119}, {26, 126}, {25, 125}, {59, 95}, {8, 109}, {12, 105}, {10,
111}, {9, 110}, {2, 106}, {3, 107}, {51, 91}, {52, 93}, {7, 108}, {23, 124},
{15, 100}, {13, 102}, {11, 96}, {53, 94}, {5, 104}, {22, 123}, {20, 121}, {19,
126}, {14, 99}, {12, 97}, {10, 103}, {8, 101}, {50, 92}, {51, 93}, {6, 105},
{21, 122}, {16, 127}, {13, 98}, {9, 102}, {24, 104}, {14, 127}, {31, 110}, {29,
108}, {27, 106}, {10, 120}, {28, 110}, {30, 109}, {4, 112}, {7, 115}, {6, 114},
{5, 113}, {16, 101}, {18, 103}, {20, 98}, {17, 102}, {28, 107}, {13, 117}, {22,
109}, {8, 116}, {34, 94}, {10, 118}, {9, 117}, {14, 115}, {27, 102}, {18, 108},
{30, 158}, {33, 161}, {5, 132}, {21, 148}, {16, 145}, {14, 143}, {12, 141}, {31,
157}, {43, 169}, {47, 173}, {6, 133}, {22, 149}, {17, 146}, {13, 142}, {51,
176}, {38, 163}, {55, 178}, {23, 145}, {52, 178}, {4, 131}, {32, 167}, {29,
154}, {20, 147}, {11, 140}, {22, 158}, {27, 146}, {44, 165}, {21, 159}, {45,
167}, {36, 175}, {58, 177}, {26, 150}, {44, 160}, {46, 162}, {43, 166}, {8,
134}, {38, 168}, {35, 173}, {41, 167}, {15, 128}, {39, 168}, {17, 129}, {18,
130}, {26, 139}, {24, 138}, {25, 139}, {49, 162}, {58, 169}, {19, 135}, {48,
164}, {57, 173}, {37, 176}, {63, 170}, {48, 165}, {19, 133}, {58, 172}, {49,
166}, {61, 170}, {56, 175}, {59, 172}, {45, 180}, {25, 131}, {60, 166}, {49,
171}, {54, 172}, {42, 177}, {24, 132}, {21, 136}, {29, 128}, {23, 137}, {62,
160}, {61, 163}, {60, 162}, {31, 129}, {24, 134}, {15, 144}, {23, 136}, {35,
131}, {39, 135}, {47, 143}, {56, 152}, {57, 153}, {36, 133}, {56, 153}, {57,
152}, {32, 130}, {49, 146}, {59, 158}, {12, 170}, {40, 143}, {48, 151}, {48,
152}, {54, 158}, {46, 135}, {51, 154}, {53, 156}, {15, 165}, {50, 153}, {54,
157}, {34, 142}, {60, 144}, {55, 155}, {11, 166}, {30, 179}, {28, 179}, {29,
178}, {50, 157}, {52, 155}, {58, 138}, {31, 174}, {61, 140}, {53, 132}, {56,
137}, {38, 148}, {39, 149}, {46, 156}, {37, 150}, {43, 159}, {17, 164}, {63,
138}, {37, 147}, {54, 129}, {18, 171}, {63, 134}, {42, 147}, {55, 141}, {27,
160}, {62, 133}, {44, 151}, {42, 150}, {81, 145}, {90, 154}, {69, 132}, {85,
148}, {74, 137}, {66, 134}, {87, 147}, {72, 142}, {78, 136}, {80, 152}, {88,
144}, {65, 136}, {67, 137}, {71, 141}, {70, 140}, {82, 153}, {89, 146}, {76,
128}, {83, 159}, {80, 156}, {78, 130}, {77, 129}, {64, 142}, {69, 139}, {65,
143}, {68, 139}, {82, 157}, {90, 138}, {75, 154}, {78, 159}, {68, 151}, {83,
128}, {81, 130}, {79, 155}, {64, 149}, {67, 150}, {84, 131}, {76, 148}, {79,
151}, {77, 149}, {69, 156}, {85, 140}, {73, 144}, {74, 145}, {86, 141}, {68,
155}, {88, 135}, {79, 175}, {75, 170}, {83, 178}, {82, 176}, {76, 168}, {66,
167}, {84, 177}, {78, 171}, {77, 168}, {70, 161}, {86, 177}, {75, 163}, {71,
174}, {77, 164}, {76, 165}, {73, 160}, {90, 176}, {74, 161}, {88, 179}, {65,
173}, {67, 175}, {68, 180}, {69, 180}, {80, 162}, {89, 171}, {80, 164}, {85,
161}, {66, 180}, {90, 172}, {86, 174}, {87, 174}, {73, 179}, {89, 163}, {83,
169}, {86, 169} }>;
(II) A more general form is to represent the graph as the orbit of {84, 95}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 11)(6, 17)(7, 10)(8, 22)(12, 31)(13, 34)(14, 32)(15, 26)(16,
41)(18, 47)(19, 48)(20, 52)(21, 23)(24, 59)(25, 60)(27, 53)(28, 45)(29, 37)(30,
66)(33, 70)(35, 49)(36, 77)(38, 56)(39, 79)(40, 81)(42, 83)(43, 84)(44, 46)(50,
61)(54, 63)(55, 87)(57, 89)(62, 80)(64, 72)(65, 78)(67, 76)(68, 88)(69, 73)(74,
85)(75, 82)(91, 93)(92, 96)(94, 102)(95, 104)(97, 110)(98, 113)(99, 117)(100,
120)(101, 123)(105, 129)(106, 132)(108, 118)(111, 115)(112, 140)(114, 146)(116,
149)(119, 152)(121, 155)(122, 145)(124, 159)(125, 162)(126, 165)(127, 167)(128,
150)(130, 143)(131, 166)(133, 164)(134, 158)(135, 151)(137, 148)(138, 172)(139,
144)(141, 174)(147, 178)(153, 163)(154, 176)(156, 160)(157, 170)(168, 175)(169,
177)(171, 173)(179, 180) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 8)(5, 13)(6, 16)(7, 19)(9, 24)(10, 26)(11, 27)(12, 30)(14, 36)(15,
38)(17, 43)(18, 46)(20, 51)(21, 48)(22, 55)(23, 57)(25, 33)(28, 63)(29, 39)(31,
58)(32, 69)(34, 72)(35, 74)(40, 79)(41, 68)(42, 82)(44, 85)(45, 66)(47, 67)(50,
84)(52, 64)(53, 81)(54, 86)(56, 65)(59, 71)(60, 89)(61, 73)(62, 70)(75, 88)(77,
83)(78, 80)(87, 90)(92, 95)(93, 98)(94, 101)(96, 106)(97, 109)(99, 116)(100,
119)(102, 104)(103, 126)(105, 127)(107, 134)(108, 135)(110, 138)(111, 139)(112,
131)(113, 142)(114, 145)(115, 133)(117, 132)(118, 150)(121, 154)(122, 151)(123,
155)(124, 153)(125, 161)(128, 168)(129, 169)(130, 156)(136, 152)(137, 173)(140,
160)(141, 158)(143, 175)(144, 163)(146, 166)(147, 176)(148, 165)(149, 178)(157,
177)(159, 164)(162, 171)(167, 180)(170, 179)(172, 174)
c: (2, 4)(3, 7)(5, 11)(6, 15)(8, 21)(9, 10)(12, 29)(13, 33)(16, 40)(17, 26)(18,
45)(19, 48)(20, 50)(22, 23)(24, 43)(25, 27)(28, 47)(30, 65)(31, 37)(34, 70)(35,
73)(36, 76)(38, 79)(39, 56)(41, 81)(42, 54)(44, 62)(46, 80)(49, 69)(51, 71)(52,
61)(53, 60)(55, 75)(57, 88)(59, 84)(63, 83)(64, 74)(66, 78)(67, 77)(68, 89)(72,
85)(82, 87)(86, 90)(91, 92)(93, 96)(94, 100)(97, 108)(98, 112)(99, 115)(101,
122)(102, 120)(103, 107)(105, 128)(106, 131)(109, 136)(110, 118)(111, 117)(113,
140)(114, 144)(116, 148)(119, 151)(121, 153)(123, 145)(124, 158)(125, 160)(126,
164)(127, 143)(129, 150)(130, 167)(132, 166)(133, 165)(134, 159)(135, 152)(137,
149)(138, 169)(139, 146)(141, 154)(142, 161)(147, 157)(155, 163)(156, 162)(168,
175)(170, 178)(171, 180)(172, 177)(173, 179)(174, 176)
C4[ 180, 46 ]
180
-1 91 92 93 96
-2 91 95 106 98
-3 99 94 107 97
-4 112 92 95 131
-5 132 113 93 104
-6 133 114 94 105
-7 100 103 115 108
-8 101 134 116 109
-9 110 102 117 107
-10 111 103 118 120
-11 166 104 96 140
-12 170 105 97 141
-13 102 117 98 142
-14 99 143 115 127
-15 165 100 144 128
-16 101 145 115 127
-17 102 146 129 164
-18 103 171 108 130
-19 133 135 126 119
-20 121 91 147 98
-21 122 136 148 159
-22 123 158 149 109
-23 145 124 136 137
-24 132 134 104 138
-25 125 139 120 131
-26 126 139 150 120
-27 102 146 160 106
-28 110 179 127 107
-29 154 178 128 108
-30 179 158 127 109
-31 110 157 129 174
-32 111 167 117 130
-33 111 112 161 120
-34 99 113 94 142
-35 114 125 173 131
-36 133 105 116 175
-37 176 147 150 118
-38 168 148 119 163
-39 121 135 168 149
-40 99 143 122 123
-41 111 122 123 167
-42 177 124 147 150
-43 166 169 104 159
-44 165 125 160 151
-45 167 180 107 97
-46 156 135 126 162
-47 143 103 118 173
-48 165 151 152 164
-49 166 146 171 162
-50 112 157 92 153
-51 154 176 91 93
-52 155 178 113 93
-53 132 156 114 94
-54 157 158 172 129
-55 155 178 97 141
-56 137 152 153 175
-57 114 173 152 153
-58 177 169 138 172
-59 158 95 106 172
-60 100 144 166 162
-61 170 96 140 163
-62 133 125 160 119
-63 134 170 105 138
-64 123 149 98 142
-65 143 124 136 173
-66 134 167 180 109
-67 126 137 150 175
-68 155 180 139 151
-69 132 156 180 139
-70 100 115 161 140
-71 92 96 141 174
-72 101 113 116 142
-73 144 179 160 106
-74 112 145 137 161
-75 154 170 108 163
-76 165 168 148 128
-77 168 149 129 164
-78 136 159 171 130
-79 155 116 151 175
-80 156 162 152 164
-81 101 145 117 130
-82 176 157 118 153
-83 178 169 159 128
-84 177 124 95 131
-85 122 148 161 140
-86 177 169 141 174
-87 110 121 147 174
-88 121 144 135 179
-89 146 171 119 163
-90 154 176 138 172
-91 1 2 51 20
-92 1 4 71 50
-93 1 5 51 52
-94 34 3 6 53
-95 2 4 59 84
-96 11 1 71 61
-97 55 12 45 3
-98 2 13 20 64
-99 34 3 14 40
-100 15 70 60 7
-101 81 16 72 8
-102 13 27 17 9
-103 47 7 18 10
-104 11 24 5 43
-105 12 36 6 63
-106 2 59 27 73
-107 45 3 28 9
-108 7 18 29 75
-109 22 66 8 30
-110 28 9 31 87
-111 33 41 10 32
-112 33 4 50 74
-113 34 5 72 52
-114 35 57 6 53
-115 14 70 16 7
-116 79 36 72 8
-117 13 81 9 32
-118 47 37 82 10
-119 89 38 62 19
-120 33 25 26 10
-121 88 39 20 87
-122 40 41 85 21
-123 22 40 41 64
-124 23 84 42 65
-125 44 35 25 62
-126 67 46 26 19
-127 14 16 28 30
-128 15 83 29 76
-129 77 17 31 54
-130 78 81 18 32
-131 35 25 4 84
-132 24 69 5 53
-133 36 6 62 19
-134 66 24 8 63
-135 88 46 39 19
-136 23 78 21 65
-137 23 56 67 74
-138 24 90 58 63
-139 68 25 69 26
-140 11 70 61 85
-141 55 12 71 86
-142 34 13 72 64
-143 14 47 40 65
-144 88 15 60 73
-145 23 81 16 74
-146 89 27 49 17
-147 37 20 42 87
-148 38 85 21 76
-149 22 77 39 64
-150 67 26 37 42
-151 44 68 79 48
-152 56 57 80 48
-153 56 57 82 50
-154 90 29 51 75
-155 55 68 79 52
-156 46 69 80 53
-157 82 50 31 54
-158 22 59 30 54
-159 78 83 21 43
-160 44 27 62 73
-161 33 70 74 85
-162 46 80 49 60
-163 89 38 61 75
-164 77 80 48 17
-165 44 15 48 76
-166 11 49 60 43
-167 66 45 41 32
-168 77 38 39 76
-169 58 83 86 43
-170 12 61 63 75
-171 78 89 49 18
-172 90 58 59 54
-173 35 57 47 65
-174 71 31 86 87
-175 56 67 79 36
-176 90 37 82 51
-177 58 84 42 86
-178 55 83 29 52
-179 88 28 73 30
-180 66 45 68 69
0