[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 47 ] =
PL(CSI(Pr_5(1,1,2,2)[3^10],3)).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {32, 96}, {33, 96}, {41, 109}, {36, 97}, {40, 109}, {41, 111},
{36, 99}, {40, 111}, {53, 127}, {52, 127}, {48, 124}, {48, 126}, {37, 117}, {60,
108}, {57, 105}, {56, 105}, {38, 114}, {45, 121}, {39, 114}, {43, 126}, {44,
121}, {9, 95}, {60, 106}, {11, 93}, {10, 92}, {37, 115}, {38, 112}, {45, 123},
{46, 120}, {8, 95}, {11, 92}, {10, 93}, {39, 112}, {43, 124}, {44, 123}, {47,
120}, {4, 92}, {46, 118}, {5, 92}, {42, 115}, {47, 118}, {55, 108}, {2, 94},
{58, 102}, {3, 95}, {2, 95}, {59, 102}, {55, 106}, {3, 94}, {5, 91}, {58, 100},
{57, 103}, {4, 91}, {59, 100}, {56, 103}, {42, 117}, {1, 97}, {23, 119}, {6,
103}, {22, 119}, {5, 103}, {1, 98}, {1, 101}, {7, 99}, {6, 98}, {1, 100}, {24,
125}, {8, 109}, {7, 98}, {2, 100}, {24, 126}, {18, 116}, {8, 110}, {2, 101},
{18, 117}, {6, 97}, {3, 107}, {18, 122}, {17, 121}, {8, 96}, {3, 106}, {9, 96},
{7, 110}, {7, 109}, {17, 122}, {20, 127}, {18, 121}, {16, 124}, {19, 127}, {5,
104}, {19, 126}, {16, 125}, {4, 106}, {22, 120}, {21, 123}, {20, 122}, {19,
125}, {12, 98}, {6, 104}, {4, 107}, {23, 120}, {21, 122}, {20, 123}, {12, 99},
{15, 125}, {30, 108}, {27, 105}, {26, 104}, {25, 107}, {15, 124}, {27, 104},
{26, 105}, {25, 108}, {30, 107}, {13, 117}, {29, 101}, {14, 118}, {35, 91}, {10,
115}, {28, 101}, {14, 119}, {13, 116}, {34, 91}, {9, 115}, {28, 102}, {13, 119},
{11, 113}, {11, 112}, {29, 102}, {13, 118}, {12, 112}, {14, 114}, {31, 99}, {9,
116}, {15, 114}, {12, 113}, {10, 116}, {17, 111}, {16, 110}, {15, 113}, {31,
97}, {32, 94}, {35, 93}, {14, 113}, {17, 110}, {16, 111}, {33, 94}, {34, 93},
{58, 178}, {58, 179}, {57, 179}, {57, 178}, {59, 176}, {45, 161}, {60, 176},
{45, 160}, {46, 160}, {46, 161}, {21, 133}, {22, 134}, {54, 166}, {50, 163},
{54, 167}, {49, 163}, {53, 167}, {19, 128}, {60, 175}, {22, 133}, {21, 134},
{53, 166}, {20, 128}, {63, 171}, {59, 175}, {56, 172}, {23, 131}, {23, 130},
{63, 170}, {56, 173}, {49, 164}, {31, 137}, {50, 164}, {31, 136}, {25, 129},
{61, 165}, {25, 128}, {61, 164}, {29, 132}, {51, 170}, {24, 130}, {62, 164},
{55, 173}, {30, 132}, {28, 134}, {26, 128}, {51, 169}, {24, 131}, {62, 165},
{55, 172}, {28, 135}, {26, 129}, {27, 135}, {27, 134}, {30, 131}, {52, 169},
{29, 131}, {52, 170}, {32, 136}, {35, 139}, {36, 140}, {32, 137}, {34, 142},
{34, 143}, {61, 144}, {48, 157}, {33, 143}, {48, 158}, {33, 142}, {35, 140},
{36, 139}, {39, 151}, {40, 152}, {43, 155}, {50, 130}, {43, 154}, {47, 158},
{51, 130}, {54, 135}, {47, 157}, {63, 141}, {62, 140}, {61, 143}, {54, 133},
{63, 140}, {62, 141}, {37, 145}, {38, 146}, {49, 133}, {53, 129}, {52, 129},
{44, 154}, {49, 135}, {50, 132}, {37, 146}, {38, 145}, {44, 155}, {51, 132},
{41, 149}, {41, 148}, {42, 148}, {39, 152}, {40, 151}, {42, 149}, {75, 139},
{83, 147}, {78, 142}, {74, 139}, {82, 147}, {83, 145}, {88, 154}, {82, 145},
{89, 154}, {84, 151}, {76, 136}, {88, 156}, {80, 148}, {77, 136}, {89, 156},
{81, 148}, {75, 141}, {80, 150}, {76, 138}, {73, 142}, {81, 150}, {77, 138},
{74, 141}, {65, 137}, {87, 159}, {64, 137}, {86, 159}, {64, 138}, {87, 157},
{65, 138}, {86, 157}, {66, 143}, {84, 153}, {69, 149}, {78, 158}, {72, 152},
{68, 149}, {78, 159}, {74, 155}, {72, 153}, {66, 144}, {77, 159}, {73, 155},
{68, 150}, {69, 150}, {77, 158}, {70, 146}, {71, 147}, {70, 147}, {73, 156},
{71, 146}, {74, 156}, {79, 153}, {79, 151}, {73, 144}, {67, 153}, {67, 152},
{78, 144}, {87, 180}, {66, 167}, {87, 178}, {65, 167}, {89, 177}, {65, 168},
{75, 162}, {68, 173}, {64, 170}, {88, 178}, {79, 165}, {75, 161}, {68, 174},
{66, 168}, {64, 171}, {90, 177}, {79, 163}, {88, 180}, {67, 174}, {76, 161},
{67, 173}, {76, 162}, {69, 180}, {70, 180}, {84, 166}, {80, 163}, {70, 179},
{90, 175}, {85, 160}, {83, 166}, {80, 165}, {69, 179}, {89, 175}, {71, 177},
{71, 176}, {85, 162}, {72, 176}, {90, 162}, {86, 174}, {81, 169}, {72, 177},
{85, 172}, {82, 171}, {81, 171}, {90, 160}, {86, 172}, {82, 169}, {85, 174},
{83, 168}, {84, 168} }>;
(II) A more general form is to represent the graph as the orbit of {32, 96}
under the group generated by the following permutations:
a: (13, 37)(14, 38)(15, 39)(16, 40)(17, 41)(18, 42)(19, 67)(20, 68)(21, 69)(22,
70)(23, 71)(24, 72)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(43, 79)(44,
80)(45, 81)(46, 82)(47, 83)(48, 84)(49, 88)(50, 89)(51, 90)(52, 85)(53, 86)(54,
87)(61, 73)(62, 74)(63, 75)(64, 76)(65, 77)(66, 78)(100, 101)(103, 104)(106,
107)(109, 110)(112, 113)(115, 116)(118, 145)(119, 146)(120, 147)(121, 148)(122,
149)(123, 150)(124, 151)(125, 152)(126, 153)(127, 174)(128, 173)(129, 172)(130,
177)(131, 176)(132, 175)(133, 180)(134, 179)(135, 178)(136, 137)(139, 140)(142,
143)(154, 163)(155, 165)(156, 164)(157, 166)(158, 168)(159, 167)(160, 169)(161,
171)(162, 170) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 7, 31)(2, 8, 32)(3, 9, 33)(4, 10, 34)(5, 11, 35)(6, 12, 36)(13, 73, 55,
37, 61, 25)(14, 74, 56, 38, 62, 26)(15, 75, 57, 39, 63, 27)(16, 76, 58, 40, 64,
28)(17, 77, 59, 41, 65, 29)(18, 78, 60, 42, 66, 30)(19, 46, 88, 67, 82, 49)(20,
47, 89, 68, 83, 50)(21, 48, 90, 69, 84, 51)(22, 43, 85, 70, 79, 52)(23, 44, 86,
71, 80, 53)(24, 45, 87, 72, 81, 54)(91, 92, 93)(94, 95, 96)(97, 98, 99)(100,
109, 137, 101, 110, 136)(102, 111, 138)(103, 112, 140, 104, 113, 139)(105, 114,
141)(106, 115, 143, 107, 116, 142)(108, 117, 144)(118, 156, 173, 145, 164,
128)(119, 155, 172, 146, 165, 129)(120, 154, 174, 147, 163, 127)(121, 159, 176,
148, 167, 131)(122, 158, 175, 149, 168, 132)(123, 157, 177, 150, 166, 130)(124,
162, 179, 151, 170, 134)(125, 161, 178, 152, 171, 135)(126, 160, 180, 153, 169,
133)
c: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21,
24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40,
41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61,
62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81,
84)(82, 83)(85, 86)(87, 90)(88, 89)(94, 97)(95, 98)(96, 99)(103, 106)(104,
107)(105, 108)(112, 115)(113, 116)(114, 117)(121, 124)(122, 125)(123, 126)(130,
133)(131, 134)(132, 135)(139, 142)(140, 143)(141, 144)(148, 151)(149, 152)(150,
153)(157, 160)(158, 161)(159, 162)(166, 169)(167, 170)(168, 171)(175, 178)(176,
179)(177, 180)
d: (7, 31)(8, 32)(9, 33)(10, 34)(11, 35)(12, 36)(13, 61)(14, 62)(15, 63)(16,
64)(17, 65)(18, 66)(19, 52)(20, 53)(21, 54)(22, 49)(23, 50)(24, 51)(37, 73)(38,
74)(39, 75)(40, 76)(41, 77)(42, 78)(43, 82)(44, 83)(45, 84)(46, 79)(47, 80)(48,
81)(67, 85)(68, 86)(69, 87)(70, 88)(71, 89)(72, 90)(91, 92)(94, 95)(97, 98)(109,
136)(110, 137)(111, 138)(112, 139)(113, 140)(114, 141)(115, 142)(116, 143)(117,
144)(118, 165)(119, 164)(120, 163)(121, 168)(122, 167)(123, 166)(124, 171)(125,
170)(126, 169)(128, 129)(131, 132)(134, 135)(145, 155)(146, 156)(147, 154)(148,
158)(149, 159)(150, 157)(151, 161)(152, 162)(153, 160)(172, 173)(175, 176)(178,
179)
e: (2, 6)(3, 5)(7, 28)(8, 27)(9, 26)(10, 25)(11, 30)(12, 29)(13, 19)(14, 24)(15,
23)(16, 22)(17, 21)(18, 20)(31, 58)(32, 57)(33, 56)(34, 55)(35, 60)(36, 59)(37,
52)(38, 51)(39, 50)(40, 49)(41, 54)(42, 53)(43, 46)(44, 45)(47, 48)(61, 67)(62,
72)(63, 71)(64, 70)(65, 69)(66, 68)(73, 85)(74, 90)(75, 89)(76, 88)(77, 87)(78,
86)(80, 84)(81, 83)(91, 106)(92, 107)(93, 108)(94, 103)(95, 104)(96, 105)(97,
100)(98, 101)(99, 102)(109, 135)(110, 134)(111, 133)(112, 132)(113, 131)(114,
130)(115, 129)(116, 128)(117, 127)(118, 126)(119, 125)(120, 124)(121, 123)(136,
178)(137, 179)(138, 180)(139, 175)(140, 176)(141, 177)(142, 172)(143, 173)(144,
174)(145, 169)(146, 170)(147, 171)(148, 166)(149, 167)(150, 168)(151, 163)(152,
164)(153, 165)(154, 161)(155, 160)(156, 162)(157, 158)
C4[ 180, 47 ]
180
-1 100 101 97 98
-2 100 101 94 95
-3 94 95 106 107
-4 91 92 106 107
-5 91 92 103 104
-6 103 104 97 98
-7 99 110 98 109
-8 110 95 96 109
-9 115 116 95 96
-10 92 93 115 116
-11 112 113 92 93
-12 99 112 113 98
-13 116 117 118 119
-14 113 114 118 119
-15 113 124 114 125
-16 110 111 124 125
-17 110 121 111 122
-18 121 122 116 117
-19 125 126 127 128
-20 122 123 127 128
-21 122 133 123 134
-22 133 134 119 120
-23 119 130 120 131
-24 125 126 130 131
-25 128 107 129 108
-26 104 105 128 129
-27 134 135 104 105
-28 101 134 102 135
-29 132 101 102 131
-30 132 107 108 131
-31 99 136 137 97
-32 136 137 94 96
-33 143 94 96 142
-34 143 91 93 142
-35 91 93 139 140
-36 99 139 140 97
-37 145 146 115 117
-38 112 145 146 114
-39 112 114 151 152
-40 111 151 152 109
-41 111 148 149 109
-42 115 148 149 117
-43 154 155 124 126
-44 121 154 155 123
-45 121 123 160 161
-46 160 161 118 120
-47 157 158 118 120
-48 124 157 158 126
-49 133 135 163 164
-50 132 130 163 164
-51 132 169 170 130
-52 169 170 127 129
-53 166 167 127 129
-54 133 166 167 135
-55 106 172 173 108
-56 103 105 172 173
-57 178 179 103 105
-58 100 178 102 179
-59 176 100 102 175
-60 176 106 108 175
-61 143 165 144 164
-62 165 140 141 164
-63 170 171 140 141
-64 137 170 138 171
-65 167 168 137 138
-66 143 144 167 168
-67 173 152 174 153
-68 149 150 173 174
-69 179 180 149 150
-70 146 179 147 180
-71 176 177 146 147
-72 176 177 152 153
-73 144 155 156 142
-74 155 156 139 141
-75 139 161 162 141
-76 136 138 161 162
-77 136 158 159 138
-78 144 158 159 142
-79 165 151 163 153
-80 165 148 150 163
-81 169 148 171 150
-82 145 147 169 171
-83 166 145 168 147
-84 166 168 151 153
-85 160 172 162 174
-86 157 159 172 174
-87 178 157 180 159
-88 154 156 178 180
-89 154 177 156 175
-90 177 160 162 175
-91 34 35 4 5
-92 11 4 5 10
-93 11 34 35 10
-94 33 2 3 32
-95 2 3 8 9
-96 33 8 9 32
-97 1 36 6 31
-98 1 12 6 7
-99 12 36 7 31
-100 1 2 58 59
-101 1 2 28 29
-102 58 59 28 29
-103 56 57 5 6
-104 26 5 27 6
-105 56 57 26 27
-106 55 3 4 60
-107 3 25 4 30
-108 55 25 60 30
-109 7 40 8 41
-110 16 17 7 8
-111 16 17 40 41
-112 11 12 38 39
-113 11 12 14 15
-114 14 15 38 39
-115 37 9 42 10
-116 13 18 9 10
-117 13 37 18 42
-118 13 46 14 47
-119 22 23 13 14
-120 22 23 46 47
-121 44 45 17 18
-122 17 18 20 21
-123 44 45 20 21
-124 15 48 16 43
-125 24 15 16 19
-126 24 48 19 43
-127 19 52 20 53
-128 25 26 19 20
-129 25 26 52 53
-130 23 24 50 51
-131 23 24 29 30
-132 50 29 51 30
-133 22 49 21 54
-134 22 27 28 21
-135 27 49 28 54
-136 77 31 32 76
-137 31 64 32 65
-138 77 64 65 76
-139 35 36 74 75
-140 35 36 62 63
-141 62 63 74 75
-142 33 34 78 73
-143 33 66 34 61
-144 66 78 61 73
-145 37 38 82 83
-146 37 70 38 71
-147 70 71 82 83
-148 80 81 41 42
-149 68 69 41 42
-150 68 69 80 81
-151 79 39 40 84
-152 67 39 72 40
-153 67 79 72 84
-154 44 88 89 43
-155 44 73 74 43
-156 88 89 73 74
-157 47 48 86 87
-158 77 78 47 48
-159 77 78 86 87
-160 45 46 90 85
-161 45 46 75 76
-162 90 85 75 76
-163 79 80 49 50
-164 49 50 61 62
-165 79 80 61 62
-166 83 84 53 54
-167 66 53 54 65
-168 66 83 84 65
-169 81 82 51 52
-170 51 52 63 64
-171 81 82 63 64
-172 55 56 85 86
-173 55 56 67 68
-174 67 68 85 86
-175 89 90 59 60
-176 59 60 71 72
-177 89 90 71 72
-178 88 57 58 87
-179 57 58 69 70
-180 88 69 70 87
0