[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 51 ] =
BGCG(UG(Rmap(180,4){5,4|5}_8);K1;{1,2}).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {66, 92}, {67, 98}, {77, 110}, {80, 115}, {65, 101}, {87, 115},
{72, 108}, {71, 97}, {82, 116}, {88, 127}, {89, 126}, {81, 121}, {75, 98}, {73,
99}, {83, 121}, {80, 122}, {66, 111}, {82, 127}, {73, 100}, {69, 104}, {90,
116}, {67, 108}, {74, 101}, {65, 113}, {82, 99}, {68, 118}, {83, 97}, {79, 125},
{75, 121}, {76, 127}, {80, 99}, {74, 126}, {68, 114}, {71, 112}, {79, 120}, {69,
127}, {66, 126}, {90, 102}, {77, 112}, {85, 107}, {70, 121}, {90, 101}, {71,
120}, {28, 92}, {38, 102}, {43, 107}, {53, 117}, {45, 108}, {59, 122}, {51,
113}, {36, 103}, {61, 126}, {55, 116}, {41, 109}, {54, 114}, {60, 120}, {24,
93}, {30, 91}, {34, 100}, {61, 123}, {46, 104}, {58, 125}, {60, 117}, {17, 91},
{57, 115}, {33, 106}, {37, 110}, {59, 112}, {38, 106}, {42, 102}, {40, 101},
{56, 117}, {59, 117}, {59, 107}, {40, 122}, {42, 120}, {46, 125}, {14, 91}, {47,
122}, {32, 118}, {45, 123}, {11, 92}, {49, 105}, {47, 118}, {39, 125}, {62,
100}, {49, 107}, {61, 103}, {5, 94}, {57, 98}, {43, 119}, {58, 102}, {34, 124},
{55, 105}, {60, 98}, {1, 94}, {41, 118}, {35, 124}, {51, 108}, {19, 115}, {12,
109}, {15, 109}, {10, 105}, {23, 116}, {12, 105}, {57, 92}, {6, 96}, {29, 123},
{17, 119}, {56, 94}, {6, 97}, {15, 104}, {53, 93}, {13, 100}, {11, 96}, {29,
112}, {54, 91}, {8, 103}, {20, 123}, {50, 93}, {30, 110}, {3, 114}, {30, 111},
{6, 119}, {18, 97}, {3, 119}, {41, 93}, {5, 113}, {26, 111}, {23, 96}, {25,
110}, {9, 113}, {39, 95}, {24, 96}, {10, 114}, {19, 106}, {21, 111}, {37, 95},
{22, 109}, {28, 103}, {31, 99}, {1, 124}, {34, 95}, {23, 106}, {21, 104}, {2,
124}, {32, 95}, {33, 94}, {11, 139}, {18, 146}, {13, 141}, {17, 144}, {20, 149},
{49, 176}, {2, 128}, {29, 159}, {4, 135}, {36, 167}, {31, 156}, {14, 141}, {7,
131}, {33, 165}, {28, 152}, {22, 146}, {1, 132}, {38, 163}, {27, 158}, {7, 130},
{32, 166}, {47, 169}, {7, 128}, {35, 164}, {24, 159}, {5, 141}, {34, 170}, {28,
148}, {4, 141}, {23, 158}, {22, 159}, {5, 140}, {58, 179}, {9, 131}, {41, 163},
{25, 147}, {10, 128}, {26, 145}, {44, 167}, {8, 132}, {31, 147}, {62, 179}, {19,
157}, {63, 177}, {60, 178}, {33, 174}, {63, 176}, {56, 168}, {62, 174}, {19,
130}, {32, 178}, {10, 153}, {20, 135}, {16, 131}, {48, 163}, {54, 162}, {3,
149}, {18, 132}, {14, 152}, {55, 161}, {48, 167}, {63, 168}, {4, 156}, {17,
137}, {8, 144}, {51, 171}, {2, 155}, {21, 140}, {13, 148}, {52, 173}, {6, 156},
{26, 128}, {15, 149}, {16, 139}, {1, 157}, {61, 161}, {40, 180}, {15, 147}, {48,
172}, {52, 168}, {27, 134}, {3, 157}, {24, 134}, {4, 155}, {46, 177}, {43, 139},
{21, 180}, {63, 158}, {62, 159}, {36, 134}, {56, 154}, {12, 175}, {18, 177},
{49, 148}, {9, 175}, {8, 175}, {44, 132}, {12, 165}, {42, 131}, {50, 155}, {14,
164}, {57, 147}, {35, 143}, {55, 155}, {13, 160}, {37, 136}, {30, 179}, {44,
129}, {9, 166}, {27, 180}, {2, 178}, {39, 151}, {16, 160}, {45, 157}, {25, 168},
{35, 146}, {27, 169}, {39, 149}, {7, 180}, {31, 172}, {50, 129}, {52, 135}, {22,
162}, {51, 134}, {52, 129}, {25, 175}, {26, 172}, {47, 152}, {50, 133}, {48,
136}, {54, 142}, {11, 178}, {53, 140}, {40, 146}, {42, 144}, {44, 150}, {46,
148}, {37, 158}, {58, 129}, {45, 145}, {53, 137}, {16, 173}, {36, 153}, {29,
160}, {20, 169}, {43, 150}, {38, 152}, {76, 140}, {78, 143}, {64, 130}, {85,
151}, {76, 142}, {75, 142}, {80, 150}, {86, 145}, {64, 136}, {69, 143}, {75,
135}, {64, 142}, {89, 151}, {69, 139}, {68, 138}, {73, 153}, {89, 137}, {74,
154}, {84, 133}, {87, 133}, {88, 138}, {73, 154}, {65, 151}, {84, 130}, {79,
153}, {70, 144}, {83, 138}, {89, 133}, {65, 156}, {85, 136}, {68, 154}, {84,
138}, {81, 143}, {72, 150}, {78, 145}, {86, 137}, {64, 160}, {67, 162}, {78,
173}, {79, 171}, {84, 177}, {86, 176}, {74, 173}, {77, 164}, {71, 172}, {76,
167}, {66, 174}, {77, 161}, {70, 170}, {78, 163}, {72, 166}, {70, 169}, {85,
165}, {67, 176}, {87, 164}, {81, 165}, {82, 170}, {90, 162}, {88, 161}, {81,
171}, {72, 179}, {86, 170}, {87, 171}, {83, 174}, {88, 166} }>;
(II) A more general form is to represent the graph as the orbit of {66, 92}
under the group generated by the following permutations:
a: (2, 5, 8, 3)(4, 9, 17, 10)(6, 7, 14, 12)(11, 21, 28, 15)(13, 25, 43, 26)(16,
30, 49, 31)(18, 19, 35, 33)(20, 32, 53, 36)(22, 23, 40, 38)(24, 27, 47, 41)(29,
37, 59, 48)(34, 56, 44, 45)(39, 60, 76, 61)(42, 54, 55, 65)(46, 57, 69, 66)(50,
51, 70, 68)(52, 72, 86, 73)(58, 67, 82, 74)(62, 63, 80, 78)(64, 77, 85, 71)(75,
88, 89, 79)(81, 83, 84, 87)(91, 105, 156, 131)(92, 104)(93, 134, 169, 118)(94,
132, 157, 124)(95, 117, 167, 123)(96, 180, 152, 109)(97, 130, 164, 165)(98, 127,
126, 125)(99, 173, 179, 176)(100, 168, 150, 145)(101, 102, 162, 116)(103, 149,
178, 140)(106, 146)(107, 172, 160, 110)(108, 170, 154, 129)(111, 148, 147,
139)(112, 136)(113, 144, 114, 155)(115, 143, 174, 177)(119, 128, 141, 175)(120,
142, 161, 151)(121, 138, 133, 171)(122, 163, 159, 158)(135, 166, 137, 153) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 45)(3, 34)(4, 72)(5, 44)(6, 62)(7, 78)(8, 56)(9, 52)(10, 86)(11, 29)(12,
63)(13, 43)(14, 80)(15, 37)(17, 73)(18, 33)(19, 35)(20, 32)(21, 48)(22, 23)(27,
41)(28, 59)(30, 31)(36, 53)(38, 40)(42, 74)(46, 85)(50, 51)(54, 82)(55, 67)(57,
77)(58, 65)(60, 61)(64, 69)(66, 71)(68, 70)(75, 88)(79, 89)(81, 84)(91, 99)(92,
112)(93, 134)(94, 132)(95, 149)(96, 159)(97, 174)(98, 161)(100, 119)(101,
102)(103, 117)(104, 136)(105, 176)(106, 146)(107, 148)(108, 155)(109, 158)(110,
147)(111, 172)(113, 129)(114, 170)(115, 164)(116, 162)(118, 169)(120, 126)(121,
138)(122, 152)(123, 178)(124, 157)(125, 151)(127, 142)(128, 145)(130, 143)(131,
173)(133, 171)(135, 166)(137, 153)(139, 160)(140, 167)(141, 150)(144, 154)(156,
179)(163, 180)(165, 177)(168, 175)
c: (1, 2, 4, 6, 3)(5, 11, 20, 18, 10)(7, 13, 24, 15, 8)(9, 16, 29, 22, 12)(14,
23, 39, 44, 26)(17, 19, 34, 50, 31)(21, 28, 27, 46, 36)(25, 42, 64, 62, 41)(30,
38, 37, 58, 48)(32, 52, 71, 54, 33)(35, 55, 65, 43, 45)(40, 49, 51, 69, 61)(47,
63, 79, 76, 66)(53, 57, 70, 84, 73)(56, 60, 75, 83, 68)(59, 67, 81, 88, 74)(72,
78, 77, 90, 85)(80, 86, 87, 82, 89)(91, 106, 95, 129, 172)(92, 169, 177, 153,
140)(93, 147, 144, 130, 100)(94, 178, 135, 97, 114)(96, 149, 132, 128, 141)(98,
121, 138, 154, 117)(99, 137, 115, 170, 133)(101, 107, 108, 143, 161)(102, 136,
179, 163, 110)(103, 180, 148, 134, 104)(105, 113, 139, 123, 146)(109, 175, 131,
160, 159)(111, 152, 158, 125, 167)(112, 162, 165, 166, 173)(116, 151, 150, 145,
164)(118, 168, 120, 142, 174)(119, 157, 124, 155, 156)(122, 176, 171, 127,
126)
C4[ 180, 51 ]
180
-1 132 124 157 94
-2 155 178 124 128
-3 157 114 149 119
-4 155 156 135 141
-5 113 94 140 141
-6 156 96 97 119
-7 180 128 130 131
-8 132 144 103 175
-9 166 113 131 175
-10 114 105 128 153
-11 178 92 139 96
-12 165 105 109 175
-13 100 148 160 141
-14 91 141 152 164
-15 147 104 149 109
-16 160 139 173 131
-17 144 91 137 119
-18 132 177 146 97
-19 157 115 106 130
-20 123 135 169 149
-21 111 180 104 140
-22 146 159 162 109
-23 158 116 106 96
-24 134 93 159 96
-25 110 168 147 175
-26 111 145 128 172
-27 134 158 169 180
-28 92 103 148 152
-29 112 123 159 160
-30 110 111 91 179
-31 99 156 147 172
-32 166 178 95 118
-33 165 94 106 174
-34 100 124 170 95
-35 143 124 146 164
-36 134 167 103 153
-37 110 136 158 95
-38 102 106 152 163
-39 125 149 95 151
-40 122 101 146 180
-41 93 118 163 109
-42 144 102 120 131
-43 139 150 107 119
-44 132 167 150 129
-45 123 145 157 108
-46 177 125 104 148
-47 122 169 118 152
-48 167 136 172 163
-49 176 148 105 107
-50 133 155 93 129
-51 134 113 171 108
-52 135 168 129 173
-53 93 137 117 140
-54 91 114 162 142
-55 155 105 116 161
-56 154 168 94 117
-57 92 147 115 98
-58 102 179 125 129
-59 122 112 117 107
-60 178 117 98 120
-61 123 103 126 161
-62 100 179 159 174
-63 176 177 168 158
-64 136 160 130 142
-65 101 156 113 151
-66 111 92 126 174
-67 176 162 108 98
-68 154 114 138 118
-69 143 104 127 139
-70 121 144 169 170
-71 112 172 97 120
-72 166 179 150 108
-73 99 154 100 153
-74 154 101 126 173
-75 121 135 98 142
-76 167 127 140 142
-77 110 112 161 164
-78 143 145 173 163
-79 125 171 120 153
-80 99 122 115 150
-81 121 143 165 171
-82 99 170 116 127
-83 121 138 97 174
-84 133 177 138 130
-85 165 136 107 151
-86 176 145 137 170
-87 133 115 171 164
-88 166 127 138 161
-89 133 126 137 151
-90 101 102 116 162
-91 14 17 30 54
-92 11 66 57 28
-93 24 50 41 53
-94 33 1 56 5
-95 34 37 39 32
-96 11 23 24 6
-97 71 6 83 18
-98 67 57 60 75
-99 80 82 73 31
-100 34 13 62 73
-101 90 40 74 65
-102 90 58 38 42
-103 36 28 61 8
-104 46 69 15 21
-105 55 12 49 10
-106 33 23 38 19
-107 59 49 85 43
-108 45 67 72 51
-109 22 12 15 41
-110 77 25 37 30
-111 66 26 30 21
-112 77 59 71 29
-113 5 51 9 65
-114 68 3 10 54
-115 57 80 19 87
-116 55 23 90 82
-117 56 59 60 53
-118 68 47 41 32
-119 3 6 17 43
-120 79 60 71 42
-121 70 81 83 75
-122 47 80 59 40
-123 45 61 29 20
-124 1 34 2 35
-125 46 79 58 39
-126 66 89 61 74
-127 88 69 82 76
-128 2 26 7 10
-129 44 58 50 52
-130 7 84 19 64
-131 16 7 9 42
-132 44 1 18 8
-133 89 50 84 87
-134 24 36 27 51
-135 4 52 20 75
-136 37 48 85 64
-137 89 17 53 86
-138 88 68 83 84
-139 11 69 16 43
-140 5 53 21 76
-141 13 14 4 5
-142 64 75 54 76
-143 78 35 69 81
-144 70 17 8 42
-145 45 78 26 86
-146 22 35 18 40
-147 57 25 15 31
-148 13 46 49 28
-149 3 15 39 20
-150 44 80 72 43
-151 89 39 85 65
-152 14 47 38 28
-153 79 36 73 10
-154 56 68 73 74
-155 55 2 4 50
-156 4 6 31 65
-157 1 45 3 19
-158 23 37 27 63
-159 22 24 29 62
-160 13 16 29 64
-161 55 77 88 61
-162 22 67 90 54
-163 78 48 38 41
-164 77 35 14 87
-165 33 12 81 85
-166 88 72 9 32
-167 44 36 48 76
-168 56 25 52 63
-169 47 70 27 20
-170 34 70 82 86
-171 79 81 51 87
-172 26 48 71 31
-173 78 16 52 74
-174 33 66 83 62
-175 12 25 8 9
-176 67 49 63 86
-177 46 18 84 63
-178 11 2 60 32
-179 58 72 62 30
-180 27 7 40 21
0