[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 181, 1 ] =
C_181(1,19).
(I) Following is a form readable by MAGMA:
g:=Graph<181|{ {2, 3}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172,
173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161},
{158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146,
147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135},
{132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {68, 69}, {66, 67},
{64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51},
{48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4, 5}, {6, 7}, {8, 9}, {10,
11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26,
27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {1, 2}, {177, 178}, {173, 174}, {169,
170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146},
{141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {69, 70}, {65, 66},
{61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {73, 74},
{77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105,
106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {179, 180}, {171,
172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59,
60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83,
84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {167,
168}, {151, 152}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88},
{103, 104}, {119, 120}, {4, 23}, {160, 179}, {140, 159}, {136, 155}, {132, 151},
{128, 147}, {68, 87}, {64, 83}, {44, 63}, {40, 59}, {8, 27}, {12, 31}, {32, 51},
{36, 55}, {72, 91}, {76, 95}, {96, 115}, {100, 119}, {104, 123}, {108, 127}, {1,
20}, {161, 180}, {139, 158}, {137, 156}, {131, 150}, {129, 148}, {67, 86}, {65,
84}, {43, 62}, {41, 60}, {3, 22}, {9, 28}, {11, 30}, {33, 52}, {35, 54}, {73,
92}, {75, 94}, {97, 116}, {99, 118}, {105, 124}, {107, 126}, {2, 21}, {162,
181}, {138, 157}, {130, 149}, {66, 85}, {42, 61}, {10, 29}, {34, 53}, {74, 93},
{98, 117}, {106, 125}, {5, 24}, {135, 154}, {133, 152}, {69, 88}, {39, 58}, {7,
26}, {37, 56}, {71, 90}, {101, 120}, {103, 122}, {6, 25}, {175, 176}, {143,
144}, {134, 153}, {47, 48}, {38, 57}, {15, 16}, {70, 89}, {79, 80}, {102, 121},
{111, 112}, {13, 32}, {159, 178}, {157, 176}, {143, 162}, {141, 160}, {15, 34},
{29, 48}, {31, 50}, {77, 96}, {79, 98}, {93, 112}, {95, 114}, {14, 33}, {158,
177}, {142, 161}, {30, 49}, {78, 97}, {94, 113}, {16, 35}, {156, 175}, {152,
171}, {148, 167}, {144, 163}, {20, 39}, {24, 43}, {28, 47}, {80, 99}, {84, 103},
{88, 107}, {92, 111}, {17, 36}, {155, 174}, {153, 172}, {147, 166}, {145, 164},
{19, 38}, {25, 44}, {27, 46}, {81, 100}, {83, 102}, {89, 108}, {91, 110}, {18,
37}, {154, 173}, {146, 165}, {26, 45}, {82, 101}, {90, 109}, {21, 40}, {151,
170}, {149, 168}, {23, 42}, {85, 104}, {87, 106}, {22, 41}, {159, 160}, {150,
169}, {31, 32}, {86, 105}, {95, 96}, {45, 64}, {63, 82}, {61, 80}, {47, 66},
{46, 65}, {62, 81}, {48, 67}, {60, 79}, {56, 75}, {52, 71}, {49, 68}, {59, 78},
{57, 76}, {51, 70}, {50, 69}, {58, 77}, {53, 72}, {55, 74}, {54, 73}, {63, 64},
{1, 163}, {4, 166}, {5, 167}, {8, 170}, {9, 171}, {12, 174}, {13, 175}, {16,
178}, {17, 179}, {2, 164}, {3, 165}, {10, 172}, {11, 173}, {18, 180}, {19, 181},
{6, 168}, {7, 169}, {1, 181}, {14, 176}, {15, 177}, {109, 128}, {127, 146},
{125, 144}, {111, 130}, {110, 129}, {126, 145}, {112, 131}, {124, 143}, {116,
135}, {120, 139}, {113, 132}, {123, 142}, {115, 134}, {121, 140}, {114, 133},
{122, 141}, {117, 136}, {119, 138}, {118, 137}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 20, 181, 163)(3, 39, 180, 144)(4, 58, 179, 125)(5, 77, 178, 106)(6, 96,
177, 87)(7, 115, 176, 68)(8, 134, 175, 49)(9, 153, 174, 30)(10, 172, 173,
11)(12, 29, 171, 154)(13, 48, 170, 135)(14, 67, 169, 116)(15, 86, 168, 97)(16,
105, 167, 78)(17, 124, 166, 59)(18, 143, 165, 40)(19, 162, 164, 21)(22, 38, 161,
145)(23, 57, 160, 126)(24, 76, 159, 107)(25, 95, 158, 88)(26, 114, 157, 69)(27,
133, 156, 50)(28, 152, 155, 31)(32, 47, 151, 136)(33, 66, 150, 117)(34, 85, 149,
98)(35, 104, 148, 79)(36, 123, 147, 60)(37, 142, 146, 41)(42, 56, 141, 127)(43,
75, 140, 108)(44, 94, 139, 89)(45, 113, 138, 70)(46, 132, 137, 51)(52, 65, 131,
118)(53, 84, 130, 99)(54, 103, 129, 80)(55, 122, 128, 61)(62, 74, 121, 109)(63,
93, 120, 90)(64, 112, 119, 71)(72, 83, 111, 100)(73, 102, 110, 81)(82, 92, 101,
91)
C4[ 181, 1 ]
181
-1 2 181 20 163
-2 1 3 21 164
-3 22 165 2 4
-4 23 166 3 5
-5 24 167 4 6
-6 25 168 5 7
-7 26 169 6 8
-8 27 170 7 9
-9 28 171 8 10
-10 11 29 172 9
-11 12 30 173 10
-12 11 13 31 174
-13 12 14 32 175
-14 33 176 13 15
-15 34 177 14 16
-16 35 178 15 17
-17 36 179 16 18
-18 37 180 17 19
-19 38 181 18 20
-20 1 39 19 21
-21 22 2 40 20
-22 23 3 41 21
-23 22 24 4 42
-24 23 25 5 43
-25 44 24 26 6
-26 45 25 27 7
-27 46 26 28 8
-28 47 27 29 9
-29 48 28 30 10
-30 11 49 29 31
-31 12 50 30 32
-32 33 13 51 31
-33 34 14 52 32
-34 33 35 15 53
-35 34 36 16 54
-36 55 35 37 17
-37 56 36 38 18
-38 57 37 39 19
-39 58 38 40 20
-40 59 39 41 21
-41 22 60 40 42
-42 23 61 41 43
-43 44 24 62 42
-44 45 25 63 43
-45 44 46 26 64
-46 45 47 27 65
-47 66 46 48 28
-48 67 47 49 29
-49 68 48 50 30
-50 69 49 51 31
-51 70 50 52 32
-52 33 71 51 53
-53 34 72 52 54
-54 55 35 73 53
-55 56 36 74 54
-56 55 57 37 75
-57 56 58 38 76
-58 77 57 59 39
-59 78 58 60 40
-60 79 59 61 41
-61 80 60 62 42
-62 81 61 63 43
-63 44 82 62 64
-64 45 83 63 65
-65 66 46 84 64
-66 67 47 85 65
-67 66 68 48 86
-68 67 69 49 87
-69 88 68 70 50
-70 89 69 71 51
-71 90 70 72 52
-72 91 71 73 53
-73 92 72 74 54
-74 55 93 73 75
-75 56 94 74 76
-76 77 57 95 75
-77 78 58 96 76
-78 77 79 59 97
-79 78 80 60 98
-80 99 79 81 61
-81 100 80 82 62
-82 101 81 83 63
-83 102 82 84 64
-84 103 83 85 65
-85 66 104 84 86
-86 67 105 85 87
-87 88 68 106 86
-88 89 69 107 87
-89 88 90 70 108
-90 89 91 71 109
-91 110 90 92 72
-92 111 91 93 73
-93 112 92 94 74
-94 113 93 95 75
-95 114 94 96 76
-96 77 115 95 97
-97 78 116 96 98
-98 99 79 117 97
-99 100 80 118 98
-100 99 101 81 119
-101 100 102 82 120
-102 121 101 103 83
-103 122 102 104 84
-104 123 103 105 85
-105 124 104 106 86
-106 125 105 107 87
-107 88 126 106 108
-108 89 127 107 109
-109 110 90 128 108
-110 111 91 129 109
-111 110 112 92 130
-112 111 113 93 131
-113 132 112 114 94
-114 133 113 115 95
-115 134 114 116 96
-116 135 115 117 97
-117 136 116 118 98
-118 99 137 117 119
-119 100 138 118 120
-120 121 101 139 119
-121 122 102 140 120
-122 121 123 103 141
-123 122 124 104 142
-124 143 123 125 105
-125 144 124 126 106
-126 145 125 127 107
-127 146 126 128 108
-128 147 127 129 109
-129 110 148 128 130
-130 111 149 129 131
-131 132 112 150 130
-132 133 113 151 131
-133 132 134 114 152
-134 133 135 115 153
-135 154 134 136 116
-136 155 135 137 117
-137 156 136 138 118
-138 157 137 139 119
-139 158 138 140 120
-140 121 159 139 141
-141 122 160 140 142
-142 143 123 161 141
-143 144 124 162 142
-144 143 145 125 163
-145 144 146 126 164
-146 165 145 147 127
-147 166 146 148 128
-148 167 147 149 129
-149 168 148 150 130
-150 169 149 151 131
-151 132 170 150 152
-152 133 171 151 153
-153 154 134 172 152
-154 155 135 173 153
-155 154 156 136 174
-156 155 157 137 175
-157 176 156 158 138
-158 177 157 159 139
-159 178 158 160 140
-160 179 159 161 141
-161 180 160 162 142
-162 143 181 161 163
-163 1 144 162 164
-164 165 2 145 163
-165 166 3 146 164
-166 165 167 4 147
-167 166 168 5 148
-168 167 169 6 149
-169 168 170 7 150
-170 169 171 8 151
-171 170 172 9 152
-172 171 173 10 153
-173 11 154 172 174
-174 12 155 173 175
-175 176 13 156 174
-176 177 14 157 175
-177 176 178 15 158
-178 177 179 16 159
-179 178 180 17 160
-180 179 181 18 161
-181 1 180 19 162
0