[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 182, 2 ] =
C_182(1,27).
(I) Following is a form readable by MAGMA:
g:=Graph<182|{ {2, 3}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172,
173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161},
{158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146,
147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135},
{132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {68, 69}, {66, 67},
{64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51},
{48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {4, 5}, {6, 7}, {8,
9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24,
25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116,
117}, {118, 119}, {120, 121}, {122, 123}, {1, 2}, {181, 182}, {177, 178}, {173,
174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150},
{145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {69,
70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37,
38}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101,
102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {179,
180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132},
{67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36},
{75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7,
8}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72},
{87, 88}, {103, 104}, {119, 120}, {4, 31}, {132, 159}, {128, 155}, {68, 95},
{64, 91}, {32, 59}, {36, 63}, {96, 123}, {100, 127}, {1, 28}, {131, 158}, {129,
156}, {67, 94}, {65, 92}, {3, 30}, {33, 60}, {35, 62}, {97, 124}, {99, 126}, {2,
29}, {175, 176}, {143, 144}, {130, 157}, {66, 93}, {47, 48}, {15, 16}, {34, 61},
{79, 80}, {98, 125}, {111, 112}, {5, 32}, {151, 178}, {149, 176}, {143, 170},
{141, 168}, {135, 162}, {133, 160}, {7, 34}, {13, 40}, {15, 42}, {21, 48}, {23,
50}, {29, 56}, {31, 58}, {69, 96}, {71, 98}, {77, 104}, {79, 106}, {85, 112},
{87, 114}, {93, 120}, {95, 122}, {6, 33}, {150, 177}, {142, 169}, {134, 161},
{14, 41}, {22, 49}, {30, 57}, {70, 97}, {78, 105}, {86, 113}, {94, 121}, {8,
35}, {152, 179}, {140, 167}, {136, 163}, {12, 39}, {24, 51}, {28, 55}, {72, 99},
{76, 103}, {88, 115}, {92, 119}, {9, 36}, {155, 182}, {153, 180}, {139, 166},
{137, 164}, {11, 38}, {25, 52}, {27, 54}, {73, 100}, {75, 102}, {89, 116}, {91,
118}, {10, 37}, {154, 181}, {138, 165}, {26, 53}, {74, 101}, {90, 117}, {16,
43}, {148, 175}, {144, 171}, {20, 47}, {80, 107}, {84, 111}, {17, 44}, {147,
174}, {145, 172}, {19, 46}, {81, 108}, {83, 110}, {18, 45}, {159, 160}, {146,
173}, {31, 32}, {82, 109}, {95, 96}, {37, 64}, {63, 90}, {61, 88}, {55, 82},
{53, 80}, {47, 74}, {45, 72}, {39, 66}, {38, 65}, {62, 89}, {54, 81}, {46, 73},
{40, 67}, {60, 87}, {56, 83}, {44, 71}, {41, 68}, {59, 86}, {57, 84}, {43, 70},
{42, 69}, {58, 85}, {48, 75}, {52, 79}, {49, 76}, {51, 78}, {50, 77}, {63, 64},
{4, 159}, {1, 156}, {3, 158}, {2, 157}, {5, 160}, {7, 162}, {13, 168}, {15,
170}, {21, 176}, {23, 178}, {6, 161}, {14, 169}, {22, 177}, {8, 163}, {12, 167},
{24, 179}, {9, 164}, {11, 166}, {25, 180}, {27, 182}, {10, 165}, {26, 181}, {1,
182}, {16, 171}, {20, 175}, {17, 172}, {19, 174}, {18, 173}, {101, 128}, {127,
154}, {125, 152}, {103, 130}, {109, 136}, {111, 138}, {117, 144}, {119, 146},
{102, 129}, {126, 153}, {110, 137}, {118, 145}, {104, 131}, {124, 151}, {108,
135}, {120, 147}, {105, 132}, {123, 150}, {107, 134}, {121, 148}, {106, 133},
{122, 149}, {112, 139}, {116, 143}, {113, 140}, {115, 142}, {114, 141}, {127,
128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 28)(3, 55)(4, 82)(5, 109)(6, 136)(7, 163)(9, 35)(10, 62)(11, 89)(12,
116)(13, 143)(14, 170)(16, 42)(17, 69)(18, 96)(19, 123)(20, 150)(21, 177)(23,
49)(24, 76)(25, 103)(26, 130)(27, 157)(30, 56)(31, 83)(32, 110)(33, 137)(34,
164)(37, 63)(38, 90)(39, 117)(40, 144)(41, 171)(44, 70)(45, 97)(46, 124)(47,
151)(48, 178)(51, 77)(52, 104)(53, 131)(54, 158)(58, 84)(59, 111)(60, 138)(61,
165)(65, 91)(66, 118)(67, 145)(68, 172)(72, 98)(73, 125)(74, 152)(75, 179)(79,
105)(80, 132)(81, 159)(86, 112)(87, 139)(88, 166)(93, 119)(94, 146)(95,
173)(100, 126)(101, 153)(102, 180)(107, 133)(108, 160)(114, 140)(115, 167)(121,
147)(122, 174)(128, 154)(129, 181)(135, 161)(142, 168)(149, 175)(156, 182) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182)
c: (2, 156)(3, 129)(4, 102)(5, 75)(6, 48)(7, 21)(8, 176)(9, 149)(10, 122)(11,
95)(12, 68)(13, 41)(15, 169)(16, 142)(17, 115)(18, 88)(19, 61)(20, 34)(22,
162)(23, 135)(24, 108)(25, 81)(26, 54)(28, 182)(29, 155)(30, 128)(31, 101)(32,
74)(33, 47)(35, 175)(36, 148)(37, 121)(38, 94)(39, 67)(42, 168)(43, 141)(44,
114)(45, 87)(46, 60)(49, 161)(50, 134)(51, 107)(52, 80)(55, 181)(56, 154)(57,
127)(58, 100)(59, 73)(62, 174)(63, 147)(64, 120)(65, 93)(69, 167)(70, 140)(71,
113)(72, 86)(76, 160)(77, 133)(78, 106)(82, 180)(83, 153)(84, 126)(85, 99)(89,
173)(90, 146)(91, 119)(96, 166)(97, 139)(98, 112)(103, 159)(104, 132)(109,
179)(110, 152)(111, 125)(116, 172)(117, 145)(123, 165)(124, 138)(130, 158)(136,
178)(137, 151)(143, 171)(150, 164)(163, 177)
C4[ 182, 2 ]
182
-1 2 156 28 182
-2 1 3 157 29
-3 2 4 158 30
-4 3 5 159 31
-5 4 6 160 32
-6 33 5 7 161
-7 34 6 8 162
-8 35 7 9 163
-9 36 8 10 164
-10 11 165 37 9
-11 12 166 38 10
-12 11 13 167 39
-13 12 14 168 40
-14 13 15 169 41
-15 14 16 170 42
-16 15 17 171 43
-17 44 16 18 172
-18 45 17 19 173
-19 46 18 20 174
-20 47 19 21 175
-21 22 176 48 20
-22 23 177 49 21
-23 22 24 178 50
-24 23 25 179 51
-25 24 26 180 52
-26 25 27 181 53
-27 26 28 182 54
-28 55 1 27 29
-29 56 2 28 30
-30 57 3 29 31
-31 58 4 30 32
-32 33 59 5 31
-33 34 60 6 32
-34 33 35 61 7
-35 34 36 62 8
-36 35 37 63 9
-37 36 38 64 10
-38 11 37 39 65
-39 66 12 38 40
-40 67 13 39 41
-41 68 14 40 42
-42 69 15 41 43
-43 44 70 16 42
-44 45 71 17 43
-45 44 46 72 18
-46 45 47 73 19
-47 46 48 74 20
-48 47 49 75 21
-49 22 48 50 76
-50 77 23 49 51
-51 78 24 50 52
-52 79 25 51 53
-53 80 26 52 54
-54 55 81 27 53
-55 56 82 28 54
-56 55 57 83 29
-57 56 58 84 30
-58 57 59 85 31
-59 58 60 86 32
-60 33 59 61 87
-61 88 34 60 62
-62 89 35 61 63
-63 90 36 62 64
-64 91 37 63 65
-65 66 92 38 64
-66 67 93 39 65
-67 66 68 94 40
-68 67 69 95 41
-69 68 70 96 42
-70 69 71 97 43
-71 44 70 72 98
-72 99 45 71 73
-73 100 46 72 74
-74 101 47 73 75
-75 102 48 74 76
-76 77 103 49 75
-77 78 104 50 76
-78 77 79 105 51
-79 78 80 106 52
-80 79 81 107 53
-81 80 82 108 54
-82 55 81 83 109
-83 110 56 82 84
-84 111 57 83 85
-85 112 58 84 86
-86 113 59 85 87
-87 88 114 60 86
-88 89 115 61 87
-89 88 90 116 62
-90 89 91 117 63
-91 90 92 118 64
-92 91 93 119 65
-93 66 92 94 120
-94 121 67 93 95
-95 122 68 94 96
-96 123 69 95 97
-97 124 70 96 98
-98 99 125 71 97
-99 100 126 72 98
-100 99 101 127 73
-101 100 102 128 74
-102 101 103 129 75
-103 102 104 130 76
-104 77 103 105 131
-105 132 78 104 106
-106 133 79 105 107
-107 134 80 106 108
-108 135 81 107 109
-109 110 136 82 108
-110 111 137 83 109
-111 110 112 138 84
-112 111 113 139 85
-113 112 114 140 86
-114 113 115 141 87
-115 88 114 116 142
-116 143 89 115 117
-117 144 90 116 118
-118 145 91 117 119
-119 146 92 118 120
-120 121 147 93 119
-121 122 148 94 120
-122 121 123 149 95
-123 122 124 150 96
-124 123 125 151 97
-125 124 126 152 98
-126 99 125 127 153
-127 154 100 126 128
-128 155 101 127 129
-129 156 102 128 130
-130 157 103 129 131
-131 132 158 104 130
-132 133 159 105 131
-133 132 134 160 106
-134 133 135 161 107
-135 134 136 162 108
-136 135 137 163 109
-137 110 136 138 164
-138 165 111 137 139
-139 166 112 138 140
-140 167 113 139 141
-141 168 114 140 142
-142 143 169 115 141
-143 144 170 116 142
-144 143 145 171 117
-145 144 146 172 118
-146 145 147 173 119
-147 146 148 174 120
-148 121 147 149 175
-149 176 122 148 150
-150 177 123 149 151
-151 178 124 150 152
-152 179 125 151 153
-153 154 180 126 152
-154 155 181 127 153
-155 154 156 182 128
-156 1 155 157 129
-157 2 156 158 130
-158 3 157 159 131
-159 132 4 158 160
-160 133 5 159 161
-161 134 6 160 162
-162 135 7 161 163
-163 136 8 162 164
-164 165 137 9 163
-165 166 138 10 164
-166 11 165 167 139
-167 12 166 168 140
-168 13 167 169 141
-169 14 168 170 142
-170 143 15 169 171
-171 144 16 170 172
-172 145 17 171 173
-173 146 18 172 174
-174 147 19 173 175
-175 176 148 20 174
-176 177 149 21 175
-177 22 176 178 150
-178 23 177 179 151
-179 24 178 180 152
-180 25 179 181 153
-181 154 26 180 182
-182 1 155 27 181
0