C4graphGraph forms for C4 [ 182, 4 ] = B(AT[91,2])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 182, 4 ] = B(AT[91,2]).

(I) Following is a form readable by MAGMA:

g:=Graph<182|{ {77, 125}, {68, 118}, {64, 115}, {76, 127}, {73, 122}, {64, 116}, {73, 124}, {75, 126}, {66, 116}, {69, 115}, {67, 117}, {74, 125}, {71, 124}, {65, 124}, {70, 123}, {68, 121}, {68, 123}, {72, 119}, {62, 126}, {41, 104}, {59, 122}, {44, 109}, {36, 102}, {61, 127}, {58, 120}, {36, 103}, {42, 105}, {47, 107}, {63, 123}, {60, 120}, {52, 112}, {57, 125}, {60, 121}, {32, 102}, {35, 101}, {34, 100}, {33, 103}, {40, 110}, {43, 108}, {45, 106}, {55, 112}, {54, 126}, {56, 113}, {39, 109}, {63, 117}, {57, 114}, {58, 113}, {58, 118}, {62, 114}, {61, 113}, {59, 119}, {37, 104}, {38, 105}, {39, 104}, {14, 95}, {12, 95}, {13, 94}, {43, 120}, {45, 121}, {8, 93}, {11, 94}, {10, 95}, {9, 94}, {4, 92}, {54, 110}, {55, 111}, {5, 92}, {51, 106}, {7, 93}, {44, 118}, {6, 93}, {40, 115}, {1, 93}, {48, 108}, {1, 95}, {2, 92}, {46, 112}, {49, 111}, {53, 107}, {1, 94}, {3, 92}, {50, 109}, {2, 98}, {1, 96}, {4, 101}, {2, 99}, {9, 107}, {2, 97}, {17, 114}, {4, 103}, {19, 119}, {3, 102}, {3, 100}, {5, 109}, {5, 108}, {7, 110}, {6, 111}, {3, 104}, {4, 105}, {6, 107}, {20, 122}, {5, 106}, {15, 96}, {9, 121}, {31, 111}, {12, 124}, {11, 123}, {10, 122}, {16, 97}, {19, 98}, {17, 96}, {18, 96}, {28, 110}, {12, 127}, {26, 105}, {25, 106}, {9, 125}, {16, 100}, {12, 120}, {11, 127}, {10, 126}, {7, 114}, {23, 98}, {20, 97}, {6, 113}, {22, 97}, {21, 98}, {7, 112}, {27, 99}, {26, 99}, {28, 102}, {31, 101}, {30, 100}, {29, 103}, {8, 115}, {24, 99}, {23, 108}, {15, 116}, {14, 117}, {11, 119}, {25, 101}, {8, 117}, {8, 118}, {10, 116}, {16, 144}, {26, 154}, {15, 142}, {32, 161}, {30, 159}, {41, 168}, {19, 145}, {25, 155}, {22, 149}, {36, 167}, {33, 162}, {24, 155}, {23, 148}, {42, 169}, {43, 168}, {25, 157}, {27, 159}, {26, 158}, {45, 169}, {46, 170}, {52, 176}, {53, 177}, {22, 147}, {35, 166}, {33, 164}, {47, 170}, {20, 146}, {15, 136}, {34, 165}, {21, 146}, {29, 149}, {44, 164}, {13, 132}, {37, 172}, {31, 150}, {30, 151}, {28, 150}, {34, 168}, {29, 151}, {14, 133}, {38, 173}, {56, 180}, {62, 178}, {61, 177}, {13, 128}, {40, 165}, {22, 152}, {63, 177}, {27, 149}, {23, 153}, {13, 130}, {14, 129}, {44, 163}, {18, 130}, {19, 131}, {51, 163}, {58, 171}, {57, 170}, {60, 175}, {51, 167}, {18, 135}, {30, 136}, {17, 134}, {49, 166}, {52, 163}, {54, 161}, {20, 140}, {48, 169}, {16, 138}, {21, 143}, {17, 139}, {55, 173}, {24, 131}, {29, 134}, {48, 171}, {21, 137}, {27, 135}, {50, 174}, {51, 175}, {56, 165}, {57, 167}, {18, 141}, {52, 171}, {40, 136}, {47, 141}, {61, 153}, {62, 152}, {43, 140}, {53, 157}, {59, 147}, {41, 133}, {46, 130}, {39, 137}, {42, 132}, {45, 131}, {48, 158}, {56, 150}, {38, 151}, {35, 145}, {37, 150}, {54, 133}, {55, 132}, {46, 154}, {47, 155}, {53, 129}, {34, 148}, {63, 137}, {38, 144}, {49, 134}, {24, 160}, {37, 157}, {50, 138}, {32, 154}, {35, 153}, {31, 164}, {59, 128}, {39, 156}, {41, 146}, {42, 145}, {36, 152}, {49, 141}, {33, 156}, {60, 129}, {50, 140}, {28, 163}, {32, 159}, {82, 146}, {66, 128}, {76, 142}, {65, 130}, {84, 151}, {88, 156}, {78, 139}, {88, 157}, {80, 149}, {79, 138}, {72, 142}, {86, 144}, {79, 137}, {78, 136}, {72, 143}, {75, 140}, {67, 139}, {74, 131}, {87, 158}, {77, 132}, {64, 138}, {89, 147}, {77, 134}, {78, 133}, {83, 159}, {87, 155}, {86, 154}, {73, 135}, {87, 153}, {86, 152}, {72, 135}, {81, 128}, {66, 144}, {82, 129}, {70, 145}, {76, 148}, {74, 147}, {84, 142}, {85, 143}, {79, 148}, {80, 139}, {83, 141}, {65, 158}, {80, 143}, {67, 156}, {69, 164}, {84, 181}, {81, 176}, {78, 172}, {87, 180}, {70, 162}, {85, 177}, {82, 182}, {75, 175}, {71, 161}, {86, 176}, {80, 182}, {83, 180}, {69, 173}, {91, 179}, {73, 160}, {68, 174}, {89, 178}, {88, 182}, {71, 168}, {77, 162}, {69, 181}, {91, 171}, {90, 170}, {66, 179}, {67, 178}, {64, 178}, {84, 166}, {82, 160}, {65, 179}, {70, 181}, {85, 166}, {71, 180}, {90, 175}, {91, 173}, {89, 174}, {81, 169}, {85, 172}, {79, 181}, {90, 160}, {75, 176}, {90, 161}, {89, 162}, {74, 182}, {91, 165}, {76, 179}, {88, 167}, {83, 172}, {81, 174} }>;

(II) A more general form is to represent the graph as the orbit of {77, 125} under the group generated by the following permutations:

a: (2, 3)(4, 5)(6, 9)(7, 11)(8, 13)(10, 15)(12, 17)(14, 18)(19, 28)(20, 30)(21, 32)(22, 34)(23, 36)(24, 37)(26, 39)(27, 41)(29, 43)(31, 45)(33, 48)(35, 51)(38, 50)(40, 59)(42, 44)(46, 63)(47, 53)(49, 60)(52, 70)(54, 72)(55, 68)(56, 74)(57, 61)(58, 77)(62, 76)(64, 66)(65, 67)(69, 81)(71, 80)(73, 78)(75, 84)(79, 86)(82, 83)(85, 90)(87, 88)(89, 91)(93, 94)(95, 96)(97, 100)(98, 102)(99, 104)(101, 106)(103, 108)(105, 109)(110, 119)(111, 121)(112, 123)(113, 125)(114, 127)(115, 128)(117, 130)(118, 132)(120, 134)(122, 136)(124, 139)(126, 142)(129, 141)(131, 150)(133, 135)(137, 154)(138, 144)(140, 151)(143, 161)(145, 163)(146, 159)(147, 165)(148, 152)(149, 168)(153, 167)(155, 157)(156, 158)(160, 172)(162, 171)(164, 169)(166, 175)(170, 177)(173, 174)(176, 181)(178, 179)(180, 182)
b: (1, 92)(2, 93)(3, 94)(4, 95)(5, 96)(6, 97)(7, 98)(8, 99)(9, 100)(10, 101)(11, 102)(12, 103)(13, 104)(14, 105)(15, 106)(16, 107)(17, 108)(18, 109)(19, 110)(20, 111)(21, 112)(22, 113)(23, 114)(24, 115)(25, 116)(26, 117)(27, 118)(28, 119)(29, 120)(30, 121)(31, 122)(32, 123)(33, 124)(34, 125)(35, 126)(36, 127)(37, 128)(38, 129)(39, 130)(40, 131)(41, 132)(42, 133)(43, 134)(44, 135)(45, 136)(46, 137)(47, 138)(48, 139)(49, 140)(50, 141)(51, 142)(52, 143)(53, 144)(54, 145)(55, 146)(56, 147)(57, 148)(58, 149)(59, 150)(60, 151)(61, 152)(62, 153)(63, 154)(64, 155)(65, 156)(66, 157)(67, 158)(68, 159)(69, 160)(70, 161)(71, 162)(72, 163)(73, 164)(74, 165)(75, 166)(76, 167)(77, 168)(78, 169)(79, 170)(80, 171)(81, 172)(82, 173)(83, 174)(84, 175)(85, 176)(86, 177)(87, 178)(88, 179)(89, 180)(90, 181)(91, 182)
c: (3, 4, 5)(6, 8, 7)(9, 14, 17)(10, 18, 11)(12, 15, 13)(16, 26, 23)(19, 20, 27)(21, 22, 24)(25, 39, 36)(28, 31, 44)(29, 45, 41)(30, 42, 43)(32, 35, 50)(33, 51, 37)(34, 38, 48)(40, 55, 58)(46, 61, 64)(47, 63, 62)(49, 68, 54)(52, 56, 69)(53, 67, 57)(59, 73, 72)(60, 78, 77)(65, 76, 66)(70, 75, 83)(71, 84, 81)(74, 82, 80)(79, 86, 87)(85, 89, 90)(94, 95, 96)(97, 99, 98)(100, 105, 108)(101, 109, 102)(103, 106, 104)(107, 117, 114)(110, 111, 118)(112, 113, 115)(116, 130, 127)(119, 122, 135)(120, 136, 132)(121, 133, 134)(123, 126, 141)(124, 142, 128)(125, 129, 139)(131, 146, 149)(137, 152, 155)(138, 154, 153)(140, 159, 145)(143, 147, 160)(144, 158, 148)(150, 164, 163)(151, 169, 168)(156, 167, 157)(161, 166, 174)(162, 175, 172)(165, 173, 171)(170, 177, 178)(176, 180, 181)
d: (1, 2)(3, 6)(4, 7)(5, 8)(9, 16)(10, 19)(11, 20)(12, 21)(13, 22)(14, 23)(15, 24)(17, 26)(18, 27)(25, 40)(28, 31)(29, 46)(30, 47)(32, 49)(33, 52)(34, 53)(35, 54)(36, 55)(37, 56)(38, 57)(39, 58)(41, 61)(42, 62)(43, 63)(45, 64)(48, 67)(50, 68)(51, 69)(60, 79)(65, 80)(66, 74)(70, 75)(71, 85)(72, 73)(76, 82)(77, 86)(78, 87)(81, 89)(84, 90)(88, 91)(92, 93)(94, 97)(95, 98)(96, 99)(100, 107)(101, 110)(102, 111)(103, 112)(104, 113)(105, 114)(106, 115)(108, 117)(109, 118)(116, 131)(119, 122)(120, 137)(121, 138)(123, 140)(124, 143)(125, 144)(126, 145)(127, 146)(128, 147)(129, 148)(130, 149)(132, 152)(133, 153)(134, 154)(136, 155)(139, 158)(141, 159)(142, 160)(151, 170)(156, 171)(157, 165)(161, 166)(162, 176)(163, 164)(167, 173)(168, 177)(169, 178)(172, 180)(175, 181)(179, 182)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 182, 4 ]
182
-1 93 94 95 96
-2 99 92 97 98
-3 100 102 92 104
-4 101 92 103 105
-5 92 106 108 109
-6 111 113 93 107
-7 110 112 114 93
-8 93 115 117 118
-9 121 125 94 107
-10 122 126 116 95
-11 123 94 127 119
-12 124 127 95 120
-13 132 94 128 130
-14 133 95 117 129
-15 136 116 96 142
-16 100 144 138 97
-17 134 114 139 96
-18 135 96 130 141
-19 145 119 98 131
-20 122 146 140 97
-21 143 146 137 98
-22 147 149 97 152
-23 148 108 98 153
-24 99 155 160 131
-25 155 101 157 106
-26 99 154 158 105
-27 99 135 159 149
-28 110 102 150 163
-29 134 103 149 151
-30 100 136 159 151
-31 111 101 150 164
-32 154 102 159 161
-33 156 103 162 164
-34 165 100 168 148
-35 166 101 145 153
-36 167 102 103 152
-37 157 104 150 172
-38 144 105 151 173
-39 156 104 137 109
-40 110 165 136 115
-41 133 146 168 104
-42 132 145 169 105
-43 168 140 108 120
-44 118 163 109 164
-45 121 169 106 131
-46 154 112 170 130
-47 155 170 107 141
-48 158 169 171 108
-49 111 166 134 141
-50 138 140 174 109
-51 167 106 163 175
-52 176 112 171 163
-53 177 157 107 129
-54 110 133 126 161
-55 132 111 112 173
-56 165 113 180 150
-57 167 114 125 170
-58 113 171 118 120
-59 122 147 128 119
-60 121 129 120 175
-61 177 113 127 153
-62 178 114 126 152
-63 177 123 137 117
-64 178 115 116 138
-65 124 179 158 130
-66 144 179 116 128
-67 156 178 117 139
-68 121 123 118 174
-69 115 181 173 164
-70 123 145 181 162
-71 124 168 180 161
-72 143 135 119 142
-73 122 124 135 160
-74 125 147 182 131
-75 176 126 140 175
-76 179 148 127 142
-77 132 134 125 162
-78 133 136 139 172
-79 137 148 181 138
-80 143 149 182 139
-81 176 169 128 174
-82 146 160 182 129
-83 180 159 172 141
-84 166 181 151 142
-85 143 166 177 172
-86 154 176 144 152
-87 155 158 180 153
-88 156 167 157 182
-89 178 147 162 174
-90 170 160 161 175
-91 165 179 171 173
-92 2 3 4 5
-93 1 6 7 8
-94 11 1 13 9
-95 1 12 14 10
-96 1 15 17 18
-97 22 2 16 20
-98 23 2 19 21
-99 2 24 26 27
-100 34 3 16 30
-101 35 25 4 31
-102 3 36 28 32
-103 33 36 4 29
-104 3 37 39 41
-105 4 26 38 42
-106 45 25 5 51
-107 47 6 9 53
-108 23 48 5 43
-109 44 5 39 50
-110 28 7 40 54
-111 55 49 6 31
-112 55 46 7 52
-113 56 58 6 61
-114 57 17 7 62
-115 69 40 8 64
-116 66 15 64 10
-117 67 14 8 63
-118 44 68 58 8
-119 11 59 72 19
-120 12 58 60 43
-121 45 68 60 9
-122 59 73 20 10
-123 11 68 70 63
-124 12 71 73 65
-125 77 57 74 9
-126 62 75 10 54
-127 11 12 61 76
-128 66 13 59 81
-129 14 60 82 53
-130 13 46 18 65
-131 45 24 19 74
-132 55 77 13 42
-133 78 14 41 54
-134 77 49 17 29
-135 27 72 18 73
-136 78 15 40 30
-137 79 39 63 21
-138 79 16 50 64
-139 67 78 80 17
-140 50 20 75 43
-141 47 49 83 18
-142 15 72 84 76
-143 80 72 85 21
-144 66 16 38 86
-145 35 70 19 42
-146 82 41 20 21
-147 22 89 59 74
-148 23 34 79 76
-149 22 80 27 29
-150 56 37 28 31
-151 38 29 84 30
-152 22 36 62 86
-153 23 35 61 87
-154 46 26 86 32
-155 24 25 47 87
-156 33 88 67 39
-157 88 25 37 53
-158 26 48 65 87
-159 27 83 30 32
-160 24 90 82 73
-161 90 71 32 54
-162 33 77 89 70
-163 44 28 51 52
-164 33 44 69 31
-165 34 56 91 40
-166 35 49 84 85
-167 88 57 36 51
-168 34 71 41 43
-169 45 48 81 42
-170 46 57 90 47
-171 58 91 48 52
-172 78 37 83 85
-173 55 69 91 38
-174 89 68 81 50
-175 90 60 51 75
-176 81 52 75 86
-177 61 63 85 53
-178 67 89 62 64
-179 66 91 65 76
-180 56 71 83 87
-181 79 69 70 84
-182 88 80 82 74
0

**************