C4graphGraph forms for C4 [ 182, 6 ] = B(AT[91,3])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 182, 6 ] = B(AT[91,3]).

(I) Following is a form readable by MAGMA:

g:=Graph<182|{ {80, 127}, {70, 118}, {67, 114}, {79, 125}, {66, 113}, {74, 126}, {72, 125}, {76, 121}, {68, 114}, {73, 127}, {69, 115}, {64, 119}, {77, 122}, {65, 121}, {78, 116}, {71, 124}, {76, 119}, {73, 116}, {75, 118}, {68, 123}, {74, 117}, {69, 122}, {36, 101}, {38, 103}, {40, 105}, {44, 110}, {37, 102}, {41, 106}, {58, 126}, {32, 101}, {61, 120}, {34, 103}, {45, 104}, {53, 112}, {42, 108}, {62, 120}, {43, 109}, {56, 126}, {33, 102}, {60, 123}, {35, 100}, {46, 105}, {47, 104}, {63, 115}, {61, 112}, {59, 117}, {39, 104}, {62, 113}, {44, 124}, {14, 95}, {34, 112}, {37, 119}, {12, 95}, {13, 94}, {56, 108}, {59, 111}, {58, 110}, {57, 109}, {8, 93}, {11, 94}, {10, 95}, {9, 94}, {60, 107}, {36, 115}, {43, 124}, {4, 92}, {32, 120}, {52, 108}, {54, 110}, {5, 92}, {40, 113}, {48, 105}, {51, 106}, {7, 93}, {6, 93}, {1, 93}, {41, 117}, {42, 118}, {49, 109}, {54, 106}, {55, 107}, {47, 114}, {50, 111}, {1, 95}, {2, 92}, {49, 111}, {1, 94}, {3, 92}, {2, 98}, {1, 96}, {4, 101}, {2, 99}, {2, 97}, {4, 103}, {16, 116}, {30, 122}, {3, 102}, {29, 123}, {31, 121}, {3, 100}, {24, 127}, {5, 109}, {21, 125}, {5, 108}, {7, 110}, {6, 111}, {3, 104}, {4, 105}, {6, 107}, {5, 106}, {15, 96}, {10, 123}, {19, 98}, {17, 96}, {16, 97}, {12, 125}, {18, 96}, {25, 107}, {9, 122}, {11, 120}, {7, 114}, {23, 98}, {20, 97}, {12, 121}, {10, 127}, {6, 113}, {22, 97}, {21, 98}, {11, 124}, {9, 126}, {7, 112}, {27, 99}, {30, 103}, {8, 115}, {31, 100}, {29, 102}, {24, 99}, {9, 116}, {25, 100}, {8, 118}, {8, 119}, {28, 99}, {26, 101}, {10, 117}, {36, 164}, {15, 142}, {34, 163}, {41, 168}, {16, 146}, {30, 156}, {24, 154}, {20, 150}, {19, 145}, {17, 147}, {47, 173}, {33, 162}, {45, 174}, {55, 180}, {29, 153}, {38, 162}, {40, 172}, {47, 171}, {13, 136}, {29, 152}, {21, 144}, {14, 139}, {18, 148}, {35, 165}, {19, 149}, {37, 163}, {39, 161}, {42, 172}, {54, 176}, {13, 138}, {28, 155}, {16, 151}, {14, 137}, {42, 173}, {23, 159}, {34, 170}, {23, 158}, {59, 178}, {56, 177}, {11, 128}, {63, 180}, {22, 157}, {15, 132}, {26, 150}, {12, 129}, {21, 152}, {14, 131}, {13, 130}, {61, 178}, {60, 179}, {36, 171}, {22, 153}, {17, 133}, {19, 135}, {18, 134}, {51, 167}, {22, 131}, {37, 176}, {48, 166}, {20, 140}, {40, 176}, {20, 141}, {57, 160}, {49, 171}, {60, 166}, {52, 174}, {53, 175}, {49, 170}, {28, 128}, {61, 161}, {23, 138}, {15, 145}, {62, 160}, {27, 133}, {26, 132}, {18, 140}, {17, 143}, {44, 179}, {46, 177}, {54, 169}, {59, 155}, {51, 146}, {53, 148}, {45, 137}, {48, 148}, {48, 149}, {33, 135}, {46, 136}, {33, 134}, {56, 159}, {50, 149}, {53, 146}, {55, 144}, {38, 143}, {57, 144}, {39, 142}, {39, 141}, {38, 141}, {52, 153}, {25, 169}, {35, 147}, {50, 130}, {51, 130}, {62, 143}, {58, 139}, {57, 139}, {50, 129}, {41, 157}, {43, 158}, {46, 155}, {52, 129}, {35, 149}, {44, 154}, {31, 168}, {63, 136}, {58, 141}, {32, 151}, {43, 156}, {45, 154}, {24, 160}, {63, 135}, {30, 167}, {55, 142}, {27, 161}, {28, 167}, {25, 164}, {27, 166}, {26, 165}, {32, 159}, {31, 160}, {75, 139}, {87, 150}, {76, 142}, {79, 140}, {89, 154}, {70, 130}, {85, 145}, {84, 144}, {67, 134}, {91, 158}, {86, 147}, {66, 132}, {71, 129}, {65, 134}, {90, 157}, {72, 128}, {64, 137}, {77, 132}, {87, 156}, {89, 146}, {81, 156}, {84, 155}, {88, 151}, {87, 152}, {69, 148}, {81, 131}, {76, 159}, {81, 133}, {85, 128}, {64, 150}, {85, 131}, {68, 147}, {82, 133}, {82, 138}, {80, 138}, {83, 136}, {66, 158}, {83, 143}, {80, 140}, {75, 151}, {69, 153}, {67, 157}, {70, 152}, {78, 145}, {88, 135}, {86, 137}, {77, 173}, {80, 176}, {78, 174}, {68, 167}, {86, 181}, {71, 164}, {81, 180}, {83, 182}, {71, 175}, {74, 163}, {73, 162}, {90, 177}, {65, 172}, {72, 165}, {64, 175}, {88, 168}, {88, 170}, {65, 178}, {70, 181}, {67, 182}, {91, 174}, {89, 172}, {84, 162}, {66, 181}, {91, 163}, {84, 173}, {82, 168}, {83, 169}, {90, 161}, {73, 181}, {89, 165}, {86, 170}, {79, 179}, {78, 178}, {75, 182}, {91, 166}, {82, 175}, {72, 182}, {90, 164}, {87, 169}, {85, 171}, {79, 177}, {77, 179}, {74, 180} }>;

(II) A more general form is to represent the graph as the orbit of {80, 127} under the group generated by the following permutations:

a: (1, 2)(3, 6)(4, 7)(5, 8)(9, 16)(10, 19)(11, 20)(12, 21)(13, 22)(14, 23)(15, 24)(17, 27)(18, 28)(26, 44)(29, 50)(30, 53)(31, 55)(32, 58)(33, 59)(35, 60)(36, 54)(37, 49)(38, 61)(39, 62)(40, 47)(41, 63)(43, 64)(45, 66)(46, 67)(48, 68)(51, 69)(52, 70)(56, 75)(57, 76)(65, 84)(71, 87)(72, 79)(73, 78)(74, 88)(77, 89)(80, 85)(81, 82)(83, 90)(86, 91)(92, 93)(94, 97)(95, 98)(96, 99)(100, 107)(101, 110)(102, 111)(103, 112)(104, 113)(105, 114)(106, 115)(108, 118)(109, 119)(117, 135)(120, 141)(121, 144)(122, 146)(123, 149)(124, 150)(126, 151)(127, 145)(128, 140)(129, 152)(130, 153)(131, 138)(132, 154)(134, 155)(136, 157)(137, 158)(139, 159)(142, 160)(143, 161)(147, 166)(148, 167)(156, 175)(162, 178)(163, 170)(164, 169)(165, 179)(168, 180)(171, 176)(172, 173)(174, 181)(177, 182)
b: (1, 92)(2, 93)(3, 94)(4, 95)(5, 96)(6, 97)(7, 98)(8, 99)(9, 100)(10, 101)(11, 102)(12, 103)(13, 104)(14, 105)(15, 106)(16, 107)(17, 108)(18, 109)(19, 110)(20, 111)(21, 112)(22, 113)(23, 114)(24, 115)(25, 116)(26, 117)(27, 118)(28, 119)(29, 120)(30, 121)(31, 122)(32, 123)(33, 124)(34, 125)(35, 126)(36, 127)(37, 128)(38, 129)(39, 130)(40, 131)(41, 132)(42, 133)(43, 134)(44, 135)(45, 136)(46, 137)(47, 138)(48, 139)(49, 140)(50, 141)(51, 142)(52, 143)(53, 144)(54, 145)(55, 146)(56, 147)(57, 148)(58, 149)(59, 150)(60, 151)(61, 152)(62, 153)(63, 154)(64, 155)(65, 156)(66, 157)(67, 158)(68, 159)(69, 160)(70, 161)(71, 162)(72, 163)(73, 164)(74, 165)(75, 166)(76, 167)(77, 168)(78, 169)(79, 170)(80, 171)(81, 172)(82, 173)(83, 174)(84, 175)(85, 176)(86, 177)(87, 178)(88, 179)(89, 180)(90, 181)(91, 182)
c: (2, 5, 4, 3)(6, 17, 10, 13)(7, 18, 12, 11)(8, 15, 14, 9)(16, 42, 26, 45)(19, 57, 30, 37)(20, 52, 32, 47)(21, 43, 34, 33)(22, 56, 36, 39)(23, 49, 38, 29)(24, 51, 40, 35)(25, 27, 41, 46)(28, 54, 48, 31)(44, 53, 65, 72)(50, 62, 68, 80)(55, 81, 74, 63)(58, 69, 76, 85)(59, 83, 60, 82)(61, 67, 79, 71)(64, 78, 75, 77)(66, 86, 73, 70)(84, 87, 91, 88)(93, 96, 95, 94)(97, 108, 101, 104)(98, 109, 103, 102)(99, 106, 105, 100)(107, 133, 117, 136)(110, 148, 121, 128)(111, 143, 123, 138)(112, 134, 125, 124)(113, 147, 127, 130)(114, 140, 129, 120)(115, 142, 131, 126)(116, 118, 132, 137)(119, 145, 139, 122)(135, 144, 156, 163)(141, 153, 159, 171)(146, 172, 165, 154)(149, 160, 167, 176)(150, 174, 151, 173)(152, 158, 170, 162)(155, 169, 166, 168)(157, 177, 164, 161)(175, 178, 182, 179)
d: (2, 5, 3)(6, 17, 11)(7, 15, 13)(8, 18, 9)(10, 14, 12)(16, 42, 33)(19, 51, 47)(20, 56, 37)(21, 41, 45)(22, 52, 29)(23, 54, 39)(24, 57, 31)(25, 27, 43)(26, 46, 34)(28, 49, 35)(30, 36, 48)(32, 40, 38)(44, 55, 82)(50, 68, 85)(53, 77, 63)(58, 76, 80)(59, 86, 72)(60, 81, 71)(61, 66, 83)(64, 79, 74)(65, 73, 75)(67, 78, 70)(84, 88, 89)(87, 90, 91)(93, 96, 94)(97, 108, 102)(98, 106, 104)(99, 109, 100)(101, 105, 103)(107, 133, 124)(110, 142, 138)(111, 147, 128)(112, 132, 136)(113, 143, 120)(114, 145, 130)(115, 148, 122)(116, 118, 134)(117, 137, 125)(119, 140, 126)(121, 127, 139)(123, 131, 129)(135, 146, 173)(141, 159, 176)(144, 168, 154)(149, 167, 171)(150, 177, 163)(151, 172, 162)(152, 157, 174)(155, 170, 165)(156, 164, 166)(158, 169, 161)(175, 179, 180)(178, 181, 182)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 182, 6 ]
182
-1 93 94 95 96
-2 99 92 97 98
-3 100 102 92 104
-4 101 92 103 105
-5 92 106 108 109
-6 111 113 93 107
-7 110 112 114 93
-8 93 115 118 119
-9 122 126 94 116
-10 123 127 95 117
-11 124 94 128 120
-12 121 125 95 129
-13 136 94 138 130
-14 137 95 139 131
-15 132 145 96 142
-16 146 116 151 97
-17 143 133 147 96
-18 134 148 96 140
-19 145 135 149 98
-20 150 140 97 141
-21 144 125 152 98
-22 157 97 131 153
-23 158 159 138 98
-24 99 154 127 160
-25 100 169 107 164
-26 132 165 101 150
-27 99 133 166 161
-28 99 155 167 128
-29 123 102 152 153
-30 122 156 167 103
-31 121 100 168 160
-32 101 159 151 120
-33 134 102 135 162
-34 112 103 170 163
-35 165 100 147 149
-36 101 115 171 164
-37 176 102 119 163
-38 143 103 162 141
-39 104 161 141 142
-40 176 113 105 172
-41 157 168 106 117
-42 172 118 173 108
-43 156 124 158 109
-44 110 154 124 179
-45 154 104 137 174
-46 155 177 136 105
-47 114 104 171 173
-48 166 148 105 149
-49 111 170 171 109
-50 111 149 129 130
-51 167 146 106 130
-52 129 108 174 153
-53 112 146 148 175
-54 110 176 169 106
-55 144 180 107 142
-56 177 126 159 108
-57 144 160 139 109
-58 110 126 139 141
-59 111 155 178 117
-60 166 123 179 107
-61 112 178 161 120
-62 143 113 160 120
-63 135 136 180 115
-64 137 150 119 175
-65 121 134 178 172
-66 132 113 158 181
-67 134 157 114 182
-68 123 167 114 147
-69 122 115 148 153
-70 181 118 130 152
-71 124 129 164 175
-72 165 125 182 128
-73 181 116 127 162
-74 180 126 117 163
-75 182 139 118 151
-76 121 159 119 142
-77 132 122 179 173
-78 145 178 116 174
-79 177 179 125 140
-80 176 127 138 140
-81 133 156 180 131
-82 133 168 138 175
-83 143 136 169 182
-84 144 155 162 173
-85 145 171 128 131
-86 147 137 170 181
-87 156 169 150 152
-88 135 168 170 151
-89 154 165 146 172
-90 177 157 161 164
-91 166 158 163 174
-92 2 3 4 5
-93 1 6 7 8
-94 11 1 13 9
-95 1 12 14 10
-96 1 15 17 18
-97 22 2 16 20
-98 23 2 19 21
-99 2 24 27 28
-100 35 3 25 31
-101 36 4 26 32
-102 33 3 37 29
-103 34 4 38 30
-104 45 3 47 39
-105 46 4 48 40
-106 5 51 41 54
-107 55 25 60 6
-108 56 5 52 42
-109 57 5 49 43
-110 44 58 7 54
-111 59 49 6 50
-112 34 61 7 53
-113 66 6 40 62
-114 67 68 47 7
-115 36 69 8 63
-116 78 16 73 9
-117 59 41 74 10
-118 70 8 42 75
-119 37 8 64 76
-120 11 61 62 32
-121 12 31 65 76
-122 77 69 30 9
-123 68 60 29 10
-124 11 44 71 43
-125 12 79 72 21
-126 56 58 74 9
-127 24 80 73 10
-128 11 28 72 85
-129 12 71 50 52
-130 13 70 50 51
-131 22 14 81 85
-132 66 77 15 26
-133 81 27 82 17
-134 33 67 18 65
-135 33 88 19 63
-136 13 46 83 63
-137 45 14 64 86
-138 23 13 80 82
-139 57 14 58 75
-140 79 80 18 20
-141 58 38 39 20
-142 55 15 39 76
-143 38 17 83 62
-144 55 57 84 21
-145 78 15 19 85
-146 89 16 51 53
-147 35 68 17 86
-148 69 48 18 53
-149 35 48 50 19
-150 26 20 64 87
-151 88 16 75 32
-152 70 29 21 87
-153 22 69 29 52
-154 44 45 89 24
-155 46 59 28 84
-156 81 30 43 87
-157 22 67 90 41
-158 66 23 91 43
-159 23 56 32 76
-160 24 57 62 31
-161 90 27 39 61
-162 33 38 73 84
-163 34 91 37 74
-164 90 25 36 71
-165 89 35 26 72
-166 91 48 27 60
-167 68 28 51 30
-168 88 82 41 31
-169 25 83 54 87
-170 88 34 49 86
-171 36 47 49 85
-172 89 40 42 65
-173 77 47 84 42
-174 45 78 91 52
-175 71 82 53 64
-176 80 37 40 54
-177 56 46 79 90
-178 78 59 61 65
-179 44 77 79 60
-180 55 81 63 74
-181 66 70 73 86
-182 67 72 83 75
0

**************