[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 183, 1 ] =
C_183(1,62).
(I) Following is a form readable by MAGMA:
g:=Graph<183|{ {2, 3}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174,
175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163},
{160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148,
149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137},
{134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122,
123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111},
{108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {52, 53}, {50, 51},
{48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {54, 55}, {56,
57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {1, 2}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154},
{149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125,
126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102},
{49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {25, 26}, {29, 30}, {33, 34}, {53, 54}, {57, 58}, {61, 62}, {65, 66},
{69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98},
{3, 4}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140},
{131, 132}, {123, 124}, {115, 116}, {107, 108}, {51, 52}, {43, 44}, {35, 36},
{11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92},
{99, 100}, {7, 8}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {103, 104},
{39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {175, 176}, {143,
144}, {111, 112}, {47, 48}, {79, 80}, {1, 63}, {64, 126}, {65, 127}, {31, 32},
{159, 160}, {95, 96}, {2, 64}, {51, 113}, {50, 112}, {47, 109}, {46, 108}, {43,
105}, {42, 104}, {39, 101}, {38, 100}, {35, 97}, {34, 96}, {3, 65}, {6, 68}, {7,
69}, {10, 72}, {11, 73}, {14, 76}, {15, 77}, {18, 80}, {19, 81}, {22, 84}, {23,
85}, {26, 88}, {27, 89}, {30, 92}, {31, 93}, {54, 116}, {55, 117}, {58, 120},
{59, 121}, {62, 124}, {63, 125}, {4, 66}, {52, 114}, {45, 107}, {44, 106}, {37,
99}, {36, 98}, {5, 67}, {12, 74}, {13, 75}, {20, 82}, {21, 83}, {28, 90}, {29,
91}, {53, 115}, {60, 122}, {61, 123}, {8, 70}, {41, 103}, {40, 102}, {9, 71},
{24, 86}, {25, 87}, {56, 118}, {57, 119}, {16, 78}, {49, 111}, {48, 110}, {17,
79}, {2, 123}, {4, 125}, {6, 127}, {1, 122}, {5, 126}, {32, 94}, {33, 95}, {3,
124}, {63, 64}, {7, 128}, {47, 168}, {39, 160}, {15, 136}, {23, 144}, {31, 152},
{55, 176}, {8, 129}, {46, 167}, {44, 165}, {42, 163}, {40, 161}, {10, 131}, {12,
133}, {14, 135}, {24, 145}, {26, 147}, {28, 149}, {30, 151}, {56, 177}, {58,
179}, {60, 181}, {62, 183}, {9, 130}, {45, 166}, {41, 162}, {13, 134}, {25,
146}, {29, 150}, {57, 178}, {61, 182}, {11, 132}, {43, 164}, {27, 148}, {59,
180}, {16, 137}, {50, 171}, {48, 169}, {18, 139}, {20, 141}, {22, 143}, {52,
173}, {54, 175}, {17, 138}, {49, 170}, {21, 142}, {53, 174}, {19, 140}, {51,
172}, {1, 183}, {32, 153}, {38, 159}, {36, 157}, {34, 155}, {33, 154}, {37,
158}, {35, 156}, {66, 128}, {119, 181}, {118, 180}, {115, 177}, {114, 176},
{111, 173}, {110, 172}, {107, 169}, {106, 168}, {103, 165}, {102, 164}, {67,
129}, {70, 132}, {71, 133}, {74, 136}, {75, 137}, {78, 140}, {79, 141}, {82,
144}, {83, 145}, {86, 148}, {87, 149}, {90, 152}, {91, 153}, {94, 156}, {95,
157}, {98, 160}, {99, 161}, {68, 130}, {117, 179}, {116, 178}, {109, 171}, {108,
170}, {101, 163}, {100, 162}, {69, 131}, {76, 138}, {77, 139}, {84, 146}, {85,
147}, {92, 154}, {93, 155}, {72, 134}, {121, 183}, {120, 182}, {105, 167}, {104,
166}, {73, 135}, {88, 150}, {89, 151}, {80, 142}, {113, 175}, {112, 174}, {81,
143}, {96, 158}, {97, 159}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 122)(3, 60)(4, 181)(5, 119)(6, 57)(7, 178)(8, 116)(9, 54)(10, 175)(11,
113)(12, 51)(13, 172)(14, 110)(15, 48)(16, 169)(17, 107)(18, 45)(19, 166)(20,
104)(21, 42)(22, 163)(23, 101)(24, 39)(25, 160)(26, 98)(27, 36)(28, 157)(29,
95)(30, 33)(31, 154)(32, 92)(34, 151)(35, 89)(37, 148)(38, 86)(40, 145)(41,
83)(43, 142)(44, 80)(46, 139)(47, 77)(49, 136)(50, 74)(52, 133)(53, 71)(55,
130)(56, 68)(58, 127)(59, 65)(61, 124)(63, 183)(64, 121)(66, 180)(67, 118)(69,
177)(70, 115)(72, 174)(73, 112)(75, 171)(76, 109)(78, 168)(79, 106)(81, 165)(82,
103)(84, 162)(85, 100)(87, 159)(88, 97)(90, 156)(91, 94)(93, 153)(96, 150)(99,
147)(102, 144)(105, 141)(108, 138)(111, 135)(114, 132)(117, 129)(120, 126)(125,
182)(128, 179)(131, 176)(134, 173)(137, 170)(140, 167)(143, 164)(146, 161)(149,
158)(152, 155)
c: (2, 63)(3, 125)(5, 66)(6, 128)(8, 69)(9, 131)(11, 72)(12, 134)(14, 75)(15,
137)(17, 78)(18, 140)(20, 81)(21, 143)(23, 84)(24, 146)(26, 87)(27, 149)(29,
90)(30, 152)(32, 93)(33, 155)(35, 96)(36, 158)(38, 99)(39, 161)(41, 102)(42,
164)(44, 105)(45, 167)(47, 108)(48, 170)(50, 111)(51, 173)(53, 114)(54, 176)(56,
117)(57, 179)(59, 120)(60, 182)(62, 123)(65, 126)(68, 129)(71, 132)(74, 135)(77,
138)(80, 141)(83, 144)(86, 147)(89, 150)(92, 153)(95, 156)(98, 159)(101,
162)(104, 165)(107, 168)(110, 171)(113, 174)(116, 177)(119, 180)(122, 183)
C4[ 183, 1 ]
183
-1 122 2 183 63
-2 1 123 3 64
-3 2 124 4 65
-4 66 3 125 5
-5 67 4 126 6
-6 68 5 127 7
-7 69 6 128 8
-8 70 7 129 9
-9 71 8 130 10
-10 11 72 9 131
-11 132 12 73 10
-12 11 133 13 74
-13 12 134 14 75
-14 13 135 15 76
-15 77 14 136 16
-16 78 15 137 17
-17 79 16 138 18
-18 80 17 139 19
-19 81 18 140 20
-20 82 19 141 21
-21 22 83 20 142
-22 143 23 84 21
-23 22 144 24 85
-24 23 145 25 86
-25 24 146 26 87
-26 88 25 147 27
-27 89 26 148 28
-28 90 27 149 29
-29 91 28 150 30
-30 92 29 151 31
-31 93 30 152 32
-32 33 94 31 153
-33 154 34 95 32
-34 33 155 35 96
-35 34 156 36 97
-36 35 157 37 98
-37 99 36 158 38
-38 100 37 159 39
-39 101 38 160 40
-40 102 39 161 41
-41 103 40 162 42
-42 104 41 163 43
-43 44 105 42 164
-44 165 45 106 43
-45 44 166 46 107
-46 45 167 47 108
-47 46 168 48 109
-48 110 47 169 49
-49 111 48 170 50
-50 112 49 171 51
-51 113 50 172 52
-52 114 51 173 53
-53 115 52 174 54
-54 55 116 53 175
-55 176 56 117 54
-56 55 177 57 118
-57 56 178 58 119
-58 57 179 59 120
-59 121 58 180 60
-60 122 59 181 61
-61 123 60 182 62
-62 124 61 183 63
-63 1 125 62 64
-64 2 126 63 65
-65 66 3 127 64
-66 67 4 128 65
-67 66 68 5 129
-68 67 69 6 130
-69 68 70 7 131
-70 132 69 71 8
-71 133 70 72 9
-72 134 71 73 10
-73 11 135 72 74
-74 12 136 73 75
-75 13 137 74 76
-76 77 14 138 75
-77 78 15 139 76
-78 77 79 16 140
-79 78 80 17 141
-80 79 81 18 142
-81 143 80 82 19
-82 144 81 83 20
-83 145 82 84 21
-84 22 146 83 85
-85 23 147 84 86
-86 24 148 85 87
-87 88 25 149 86
-88 89 26 150 87
-89 88 90 27 151
-90 89 91 28 152
-91 90 92 29 153
-92 154 91 93 30
-93 155 92 94 31
-94 156 93 95 32
-95 33 157 94 96
-96 34 158 95 97
-97 35 159 96 98
-98 99 36 160 97
-99 100 37 161 98
-100 99 101 38 162
-101 100 102 39 163
-102 101 103 40 164
-103 165 102 104 41
-104 166 103 105 42
-105 167 104 106 43
-106 44 168 105 107
-107 45 169 106 108
-108 46 170 107 109
-109 110 47 171 108
-110 111 48 172 109
-111 110 112 49 173
-112 111 113 50 174
-113 112 114 51 175
-114 176 113 115 52
-115 177 114 116 53
-116 178 115 117 54
-117 55 179 116 118
-118 56 180 117 119
-119 57 181 118 120
-120 121 58 182 119
-121 122 59 183 120
-122 121 1 123 60
-123 122 2 124 61
-124 123 3 125 62
-125 124 4 126 63
-126 125 5 127 64
-127 126 6 128 65
-128 66 127 7 129
-129 67 128 8 130
-130 68 129 9 131
-131 132 69 130 10
-132 11 133 70 131
-133 132 12 134 71
-134 133 13 135 72
-135 134 14 136 73
-136 135 15 137 74
-137 136 16 138 75
-138 137 17 139 76
-139 77 138 18 140
-140 78 139 19 141
-141 79 140 20 142
-142 143 80 141 21
-143 22 144 81 142
-144 143 23 145 82
-145 144 24 146 83
-146 145 25 147 84
-147 146 26 148 85
-148 147 27 149 86
-149 148 28 150 87
-150 88 149 29 151
-151 89 150 30 152
-152 90 151 31 153
-153 154 91 152 32
-154 33 155 92 153
-155 154 34 156 93
-156 155 35 157 94
-157 156 36 158 95
-158 157 37 159 96
-159 158 38 160 97
-160 159 39 161 98
-161 99 160 40 162
-162 100 161 41 163
-163 101 162 42 164
-164 165 102 163 43
-165 44 166 103 164
-166 165 45 167 104
-167 166 46 168 105
-168 167 47 169 106
-169 168 48 170 107
-170 169 49 171 108
-171 170 50 172 109
-172 110 171 51 173
-173 111 172 52 174
-174 112 173 53 175
-175 176 113 174 54
-176 55 177 114 175
-177 176 56 178 115
-178 177 57 179 116
-179 178 58 180 117
-180 179 59 181 118
-181 180 60 182 119
-182 181 61 183 120
-183 121 1 182 62
0