[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 184, 2 ] =
C_184(1,45).
(I) Following is a form readable by MAGMA:
g:=Graph<184|{ {2, 3}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174,
175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163},
{160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148,
149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137},
{134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122,
123}, {120, 121}, {118, 119}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53},
{50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {4, 5},
{6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22,
23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {62,
63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78,
79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94,
95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108,
109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {1, 2}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154},
{149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125,
126}, {121, 122}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42},
{37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{33, 34}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90},
{93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118},
{3, 4}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140},
{131, 132}, {123, 124}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27,
28}, {35, 36}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108},
{115, 116}, {7, 8}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120},
{55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {175,
176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {2, 47}, {130, 175}, {128,
173}, {16, 61}, {18, 63}, {64, 109}, {66, 111}, {80, 125}, {82, 127}, {1, 46},
{129, 174}, {17, 62}, {65, 110}, {81, 126}, {3, 48}, {139, 184}, {135, 180},
{131, 176}, {7, 52}, {11, 56}, {15, 60}, {67, 112}, {71, 116}, {75, 120}, {79,
124}, {4, 49}, {134, 179}, {132, 177}, {6, 51}, {12, 57}, {14, 59}, {68, 113},
{70, 115}, {76, 121}, {78, 123}, {5, 50}, {133, 178}, {13, 58}, {69, 114}, {77,
122}, {8, 53}, {138, 183}, {136, 181}, {10, 55}, {72, 117}, {74, 119}, {9, 54},
{159, 160}, {137, 182}, {31, 32}, {73, 118}, {95, 96}, {19, 64}, {59, 104}, {55,
100}, {51, 96}, {23, 68}, {27, 72}, {31, 76}, {63, 108}, {20, 65}, {60, 105},
{54, 99}, {52, 97}, {22, 67}, {28, 73}, {30, 75}, {62, 107}, {21, 66}, {61,
106}, {53, 98}, {29, 74}, {24, 69}, {58, 103}, {56, 101}, {26, 71}, {25, 70},
{57, 102}, {32, 77}, {50, 95}, {48, 93}, {34, 79}, {33, 78}, {49, 94}, {35, 80},
{47, 92}, {43, 88}, {39, 84}, {36, 81}, {46, 91}, {44, 89}, {38, 83}, {37, 82},
{45, 90}, {40, 85}, {42, 87}, {41, 86}, {63, 64}, {4, 143}, {16, 155}, {20,
159}, {32, 171}, {36, 175}, {1, 140}, {3, 142}, {17, 156}, {19, 158}, {33, 172},
{35, 174}, {2, 141}, {18, 157}, {34, 173}, {5, 144}, {45, 184}, {39, 178}, {37,
176}, {7, 146}, {13, 152}, {15, 154}, {6, 145}, {38, 177}, {14, 153}, {8, 147},
{44, 183}, {40, 179}, {12, 151}, {9, 148}, {43, 182}, {41, 180}, {11, 150}, {10,
149}, {42, 181}, {21, 160}, {23, 162}, {29, 168}, {31, 170}, {22, 161}, {30,
169}, {1, 184}, {24, 163}, {28, 167}, {25, 164}, {27, 166}, {26, 165}, {83,
128}, {127, 172}, {123, 168}, {119, 164}, {87, 132}, {91, 136}, {95, 140}, {115,
160}, {84, 129}, {126, 171}, {124, 169}, {118, 163}, {86, 131}, {92, 137}, {94,
139}, {116, 161}, {85, 130}, {125, 170}, {93, 138}, {117, 162}, {88, 133}, {122,
167}, {120, 165}, {90, 135}, {89, 134}, {121, 166}, {96, 141}, {98, 143}, {112,
157}, {114, 159}, {97, 142}, {113, 158}, {99, 144}, {103, 148}, {107, 152},
{111, 156}, {100, 145}, {102, 147}, {108, 153}, {110, 155}, {101, 146}, {109,
154}, {104, 149}, {106, 151}, {105, 150}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 140)(3, 95)(4, 50)(6, 144)(7, 99)(8, 54)(10, 148)(11, 103)(12, 58)(14,
152)(15, 107)(16, 62)(18, 156)(19, 111)(20, 66)(22, 160)(23, 115)(24, 70)(26,
164)(27, 119)(28, 74)(30, 168)(31, 123)(32, 78)(34, 172)(35, 127)(36, 82)(38,
176)(39, 131)(40, 86)(42, 180)(43, 135)(44, 90)(46, 184)(47, 139)(48, 94)(51,
143)(52, 98)(55, 147)(56, 102)(59, 151)(60, 106)(63, 155)(64, 110)(67, 159)(68,
114)(71, 163)(72, 118)(75, 167)(76, 122)(79, 171)(80, 126)(83, 175)(84, 130)(87,
179)(88, 134)(91, 183)(92, 138)(96, 142)(100, 146)(104, 150)(108, 154)(112,
158)(116, 162)(120, 166)(124, 170)(128, 174)(132, 178)(136, 182) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184)
c: (2, 46)(3, 91)(4, 136)(5, 181)(6, 42)(7, 87)(8, 132)(9, 177)(10, 38)(11,
83)(12, 128)(13, 173)(14, 34)(15, 79)(16, 124)(17, 169)(18, 30)(19, 75)(20,
120)(21, 165)(22, 26)(23, 71)(24, 116)(25, 161)(27, 67)(28, 112)(29, 157)(31,
63)(32, 108)(33, 153)(35, 59)(36, 104)(37, 149)(39, 55)(40, 100)(41, 145)(43,
51)(44, 96)(45, 141)(48, 92)(49, 137)(50, 182)(52, 88)(53, 133)(54, 178)(56,
84)(57, 129)(58, 174)(60, 80)(61, 125)(62, 170)(64, 76)(65, 121)(66, 166)(68,
72)(69, 117)(70, 162)(73, 113)(74, 158)(77, 109)(78, 154)(81, 105)(82, 150)(85,
101)(86, 146)(89, 97)(90, 142)(94, 138)(95, 183)(98, 134)(99, 179)(102,
130)(103, 175)(106, 126)(107, 171)(110, 122)(111, 167)(114, 118)(115, 163)(119,
159)(123, 155)(127, 151)(131, 147)(135, 143)(140, 184)(144, 180)(148, 176)(152,
172)(156, 168)(160, 164)
C4[ 184, 2 ]
184
-1 2 46 140 184
-2 1 3 47 141
-3 2 4 48 142
-4 143 3 5 49
-5 144 4 6 50
-6 145 5 7 51
-7 146 6 8 52
-8 147 7 9 53
-9 148 8 10 54
-10 11 55 149 9
-11 12 56 150 10
-12 11 13 57 151
-13 12 14 58 152
-14 13 15 59 153
-15 154 14 16 60
-16 155 15 17 61
-17 156 16 18 62
-18 157 17 19 63
-19 158 18 20 64
-20 159 19 21 65
-21 22 66 160 20
-22 23 67 161 21
-23 22 24 68 162
-24 23 25 69 163
-25 24 26 70 164
-26 165 25 27 71
-27 166 26 28 72
-28 167 27 29 73
-29 168 28 30 74
-30 169 29 31 75
-31 170 30 32 76
-32 33 77 171 31
-33 34 78 172 32
-34 33 35 79 173
-35 34 36 80 174
-36 35 37 81 175
-37 176 36 38 82
-38 177 37 39 83
-39 178 38 40 84
-40 179 39 41 85
-41 180 40 42 86
-42 181 41 43 87
-43 44 88 182 42
-44 45 89 183 43
-45 44 46 90 184
-46 1 45 47 91
-47 2 46 48 92
-48 3 47 49 93
-49 4 48 50 94
-50 5 49 51 95
-51 6 50 52 96
-52 7 51 53 97
-53 8 52 54 98
-54 55 99 9 53
-55 56 100 10 54
-56 11 55 57 101
-57 12 56 58 102
-58 13 57 59 103
-59 14 58 60 104
-60 15 59 61 105
-61 16 60 62 106
-62 17 61 63 107
-63 18 62 64 108
-64 19 63 65 109
-65 66 110 20 64
-66 67 111 21 65
-67 22 66 68 112
-68 23 67 69 113
-69 24 68 70 114
-70 25 69 71 115
-71 26 70 72 116
-72 27 71 73 117
-73 28 72 74 118
-74 29 73 75 119
-75 30 74 76 120
-76 77 121 31 75
-77 78 122 32 76
-78 33 77 79 123
-79 34 78 80 124
-80 35 79 81 125
-81 36 80 82 126
-82 37 81 83 127
-83 38 82 84 128
-84 39 83 85 129
-85 40 84 86 130
-86 41 85 87 131
-87 88 132 42 86
-88 89 133 43 87
-89 44 88 90 134
-90 45 89 91 135
-91 46 90 92 136
-92 47 91 93 137
-93 48 92 94 138
-94 49 93 95 139
-95 50 94 96 140
-96 51 95 97 141
-97 52 96 98 142
-98 99 143 53 97
-99 100 144 54 98
-100 55 99 101 145
-101 56 100 102 146
-102 57 101 103 147
-103 58 102 104 148
-104 59 103 105 149
-105 60 104 106 150
-106 61 105 107 151
-107 62 106 108 152
-108 63 107 109 153
-109 110 154 64 108
-110 111 155 65 109
-111 66 110 112 156
-112 67 111 113 157
-113 68 112 114 158
-114 69 113 115 159
-115 70 114 116 160
-116 71 115 117 161
-117 72 116 118 162
-118 73 117 119 163
-119 74 118 120 164
-120 121 165 75 119
-121 122 166 76 120
-122 77 121 123 167
-123 78 122 124 168
-124 79 123 125 169
-125 80 124 126 170
-126 81 125 127 171
-127 82 126 128 172
-128 83 127 129 173
-129 84 128 130 174
-130 85 129 131 175
-131 132 176 86 130
-132 133 177 87 131
-133 88 132 134 178
-134 89 133 135 179
-135 90 134 136 180
-136 91 135 137 181
-137 92 136 138 182
-138 93 137 139 183
-139 94 138 140 184
-140 1 95 139 141
-141 2 96 140 142
-142 143 3 97 141
-143 144 4 98 142
-144 99 143 145 5
-145 100 144 146 6
-146 101 145 147 7
-147 102 146 148 8
-148 103 147 149 9
-149 104 148 150 10
-150 11 105 149 151
-151 12 106 150 152
-152 13 107 151 153
-153 154 14 108 152
-154 155 15 109 153
-155 110 154 156 16
-156 111 155 157 17
-157 112 156 158 18
-158 113 157 159 19
-159 114 158 160 20
-160 115 159 161 21
-161 22 116 160 162
-162 23 117 161 163
-163 24 118 162 164
-164 165 25 119 163
-165 166 26 120 164
-166 121 165 167 27
-167 122 166 168 28
-168 123 167 169 29
-169 124 168 170 30
-170 125 169 171 31
-171 126 170 172 32
-172 33 127 171 173
-173 34 128 172 174
-174 35 129 173 175
-175 176 36 130 174
-176 177 37 131 175
-177 132 176 178 38
-178 133 177 179 39
-179 134 178 180 40
-180 135 179 181 41
-181 136 180 182 42
-182 137 181 183 43
-183 44 138 182 184
-184 1 45 139 183
0