[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 184, 6 ] =
SDD(W(23,2)).
(I) Following is a form readable by MAGMA:
g:=Graph<184|{ {80, 125}, {82, 127}, {80, 126}, {81, 127}, {81, 126}, {66, 114},
{68, 116}, {64, 113}, {67, 114}, {65, 115}, {79, 125}, {78, 124}, {75, 121},
{74, 120}, {70, 116}, {65, 114}, {79, 124}, {75, 120}, {71, 116}, {70, 117},
{76, 121}, {78, 123}, {69, 115}, {77, 123}, {76, 122}, {68, 115}, {77, 122},
{72, 117}, {74, 119}, {72, 118}, {73, 119}, {73, 118}, {42, 106}, {44, 108},
{40, 105}, {43, 106}, {41, 107}, {47, 109}, {41, 106}, {47, 108}, {34, 103},
{46, 107}, {33, 103}, {45, 107}, {32, 103}, {44, 107}, {32, 104}, {56, 112},
{35, 105}, {59, 113}, {35, 104}, {59, 112}, {36, 104}, {62, 114}, {60, 112},
{38, 106}, {37, 104}, {61, 112}, {39, 105}, {63, 113}, {38, 105}, {62, 113},
{10, 95}, {58, 111}, {9, 95}, {57, 111}, {8, 95}, {56, 111}, {6, 94}, {39, 127},
{54, 110}, {4, 93}, {7, 94}, {52, 109}, {55, 110}, {5, 95}, {36, 126}, {53,
111}, {5, 94}, {53, 110}, {1, 93}, {33, 125}, {48, 108}, {50, 110}, {34, 127},
{49, 108}, {3, 93}, {51, 109}, {1, 94}, {2, 93}, {50, 109}, {27, 123}, {28,
125}, {31, 126}, {24, 122}, {30, 124}, {25, 124}, {8, 96}, {16, 121}, {19, 122},
{11, 97}, {18, 120}, {11, 96}, {12, 96}, {21, 121}, {14, 98}, {13, 96}, {22,
123}, {15, 97}, {14, 97}, {18, 98}, {20, 100}, {2, 115}, {19, 98}, {16, 97}, {7,
118}, {6, 116}, {23, 101}, {17, 99}, {17, 98}, {23, 100}, {13, 120}, {22, 99},
{3, 117}, {21, 99}, {20, 99}, {15, 119}, {30, 102}, {28, 101}, {31, 102}, {12,
118}, {29, 103}, {29, 102}, {9, 117}, {26, 102}, {24, 100}, {10, 119}, {25,
100}, {27, 101}, {26, 101}, {15, 143}, {17, 145}, {48, 176}, {14, 143}, {17,
144}, {12, 142}, {18, 144}, {45, 175}, {51, 177}, {13, 142}, {19, 144}, {49,
178}, {55, 180}, {9, 141}, {23, 147}, {21, 145}, {11, 143}, {42, 174}, {54,
178}, {8, 141}, {23, 146}, {20, 145}, {11, 142}, {8, 142}, {20, 146}, {10, 141},
{40, 175}, {22, 145}, {52, 179}, {3, 139}, {60, 180}, {36, 172}, {29, 149}, {27,
147}, {5, 141}, {2, 139}, {29, 148}, {26, 147}, {5, 140}, {1, 139}, {63, 181},
{57, 179}, {39, 173}, {33, 171}, {30, 148}, {24, 146}, {6, 140}, {7, 140}, {61,
182}, {37, 174}, {31, 148}, {25, 146}, {1, 140}, {4, 138}, {26, 148}, {4, 139},
{58, 181}, {34, 173}, {28, 147}, {43, 176}, {14, 144}, {62, 160}, {16, 143},
{46, 177}, {3, 163}, {63, 159}, {62, 159}, {60, 158}, {2, 161}, {61, 158}, {7,
164}, {6, 162}, {59, 159}, {57, 157}, {37, 128}, {59, 158}, {56, 157}, {56,
158}, {58, 157}, {12, 164}, {51, 155}, {53, 157}, {40, 129}, {43, 130}, {50,
155}, {53, 156}, {9, 163}, {15, 165}, {42, 128}, {48, 154}, {54, 156}, {13,
166}, {49, 154}, {55, 156}, {45, 129}, {46, 131}, {50, 156}, {10, 165}, {52,
155}, {24, 168}, {39, 151}, {41, 153}, {51, 131}, {38, 151}, {41, 152}, {52,
133}, {55, 134}, {21, 167}, {36, 150}, {27, 169}, {42, 152}, {48, 130}, {54,
132}, {25, 170}, {37, 150}, {31, 172}, {43, 152}, {18, 166}, {35, 151}, {33,
149}, {30, 170}, {45, 153}, {47, 155}, {32, 149}, {61, 136}, {35, 150}, {44,
153}, {47, 154}, {49, 132}, {32, 150}, {44, 154}, {16, 167}, {34, 149}, {28,
171}, {46, 153}, {63, 135}, {60, 134}, {19, 168}, {4, 184}, {57, 133}, {58,
135}, {38, 152}, {22, 169}, {40, 151}, {64, 137}, {67, 138}, {66, 136}, {69,
137}, {71, 138}, {82, 128}, {91, 137}, {90, 136}, {87, 133}, {86, 132}, {83,
129}, {83, 128}, {91, 136}, {87, 132}, {84, 129}, {92, 137}, {86, 131}, {84,
130}, {92, 138}, {85, 131}, {85, 130}, {88, 133}, {90, 135}, {88, 134}, {89,
135}, {64, 159}, {89, 134}, {65, 161}, {65, 160}, {66, 160}, {67, 160}, {69,
161}, {92, 184}, {87, 179}, {86, 178}, {85, 177}, {84, 176}, {79, 171}, {78,
170}, {77, 169}, {76, 168}, {70, 162}, {68, 161}, {87, 178}, {85, 176}, {79,
170}, {77, 168}, {71, 162}, {70, 163}, {68, 162}, {78, 169}, {86, 177}, {72,
163}, {92, 183}, {88, 179}, {76, 167}, {72, 164}, {91, 183}, {90, 182}, {89,
181}, {88, 180}, {75, 167}, {74, 166}, {73, 165}, {73, 164}, {91, 182}, {89,
180}, {75, 166}, {74, 165}, {90, 181}, {69, 183}, {66, 182}, {64, 183}, {67,
184}, {84, 175}, {80, 171}, {80, 172}, {83, 175}, {82, 174}, {81, 173}, {81,
172}, {83, 174}, {71, 184}, {82, 173} }>;
(II) A more general form is to represent the graph as the orbit of {80, 125}
under the group generated by the following permutations:
a: (14, 16)(17, 21)(18, 75)(19, 76)(98, 121)(144, 167) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (50, 52)(53, 57)(54, 87)(55, 88)(110, 133)(156, 179)
c: (56, 58)(59, 63)(60, 89)(61, 90)(112, 135)(158, 181)
d: (120, 166)
e: (117, 163)
f: (62, 64)(65, 69)(66, 91)(67, 92)(114, 137)(160, 183)
g: (2, 5)(3, 6)(4, 7)(8, 65)(9, 68)(10, 69)(11, 62)(12, 67)(13, 66)(14, 59)(15,
64)(16, 63)(17, 56)(18, 61)(19, 60)(20, 53)(21, 58)(22, 57)(23, 50)(24, 55)(25,
54)(26, 47)(27, 52)(28, 51)(29, 44)(30, 49)(31, 48)(32, 41)(33, 46)(34, 45)(35,
38)(36, 43)(37, 42)(39, 40)(71, 72)(73, 92)(74, 91)(75, 90)(76, 89)(77, 88)(78,
87)(79, 86)(80, 85)(81, 84)(82, 83)(93, 94)(95, 115)(96, 114)(97, 113)(98,
112)(99, 111)(100, 110)(101, 109)(102, 108)(103, 107)(104, 106)(116, 117)(118,
138)(119, 137)(120, 136)(121, 135)(122, 134)(123, 133)(124, 132)(125, 131)(126,
130)(127, 129)(139, 140)(141, 161)(142, 160)(143, 159)(144, 158)(145, 157)(146,
156)(147, 155)(148, 154)(149, 153)(150, 152)(162, 163)(164, 184)(165, 183)(166,
182)(167, 181)(168, 180)(169, 179)(170, 178)(171, 177)(172, 176)(173, 175)
h: (135, 181)
m: (47, 49)(50, 54)(51, 86)(52, 87)(109, 132)(155, 178)
n1: (131, 177)
a1: (59, 61)(62, 66)(63, 90)(64, 91)(113, 136)(159, 182)
b1: (130, 176)
c1: (138, 184)
d1: (127, 173)
e1: (123, 169)
f1: (44, 46)(47, 51)(48, 85)(49, 86)(108, 131)(154, 177)
g1: (126, 172)
h1: (119, 165)
m1: (116, 162)
n2: (121, 167)
a2: (38, 40)(41, 45)(42, 83)(43, 84)(106, 129)(152, 175)
b2: (32, 34)(35, 39)(36, 81)(37, 82)(104, 127)(150, 173)
c2: (41, 43)(44, 48)(45, 84)(46, 85)(107, 130)(153, 176)
d2: (128, 174)
e2: (23, 25)(26, 30)(27, 78)(28, 79)(101, 124)(147, 170)
f2: (136, 182)
g2: (53, 55)(56, 60)(57, 88)(58, 89)(111, 134)(157, 180)
h2: (133, 179)
m2: (35, 37)(38, 42)(39, 82)(40, 83)(105, 128)(151, 174)
n3: (8, 10)(11, 15)(12, 73)(13, 74)(96, 119)(142, 165)
a3: (137, 183)
b3: (122, 168)
c3: (132, 178)
d3: (93, 139)
e3: (129, 175)
f3: (125, 171)
g3: (94, 140)
h3: (2, 4)(65, 67)(68, 71)(69, 92)(115, 138)(161, 184)
m3: (29, 31)(32, 36)(33, 80)(34, 81)(103, 126)(149, 172)
n4: (1, 2, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17,
14, 11, 8, 5)(3, 68, 67, 64, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25,
22, 19, 16, 13, 10, 7)(4, 69, 66, 63, 60, 57, 54, 51, 48, 45, 42, 39, 36, 33,
30, 27, 24, 21, 18, 15, 12, 9, 6)(70, 71, 92, 91, 90, 89, 88, 87, 86, 85, 84,
83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72)(93, 115, 114, 113, 112, 111,
110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, 96, 95,
94)(116, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125,
124, 123, 122, 121, 120, 119, 118, 117)(139, 161, 160, 159, 158, 157, 156, 155,
154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140)(162,
184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171, 170, 169,
168, 167, 166, 165, 164, 163)
a4: (11, 13)(14, 18)(15, 74)(16, 75)(97, 120)(143, 166)
b4: (134, 180)
c4: (26, 28)(29, 33)(30, 79)(31, 80)(102, 125)(148, 171)
d4: (124, 170)
e4: (17, 19)(20, 24)(21, 76)(22, 77)(99, 122)(145, 168)
f4: (118, 164)
g4: (20, 22)(23, 27)(24, 77)(25, 78)(100, 123)(146, 169)
C4[ 184, 6 ]
184
-1 93 94 139 140
-2 93 115 139 161
-3 93 117 139 163
-4 93 138 139 184
-5 94 95 140 141
-6 94 116 140 162
-7 94 118 140 164
-8 95 96 141 142
-9 95 117 141 163
-10 165 95 119 141
-11 143 96 97 142
-12 96 118 142 164
-13 166 96 120 142
-14 143 144 97 98
-15 143 165 97 119
-16 121 143 167 97
-17 99 144 145 98
-18 144 166 98 120
-19 122 144 168 98
-20 99 100 145 146
-21 99 121 145 167
-22 99 123 145 169
-23 100 101 146 147
-24 100 122 146 168
-25 100 124 146 170
-26 101 102 147 148
-27 101 123 147 169
-28 101 125 147 171
-29 102 103 148 149
-30 102 124 148 170
-31 102 126 148 172
-32 103 104 149 150
-33 103 125 149 171
-34 103 127 149 173
-35 104 105 150 151
-36 104 126 150 172
-37 104 128 150 174
-38 105 106 151 152
-39 105 127 151 173
-40 105 129 151 175
-41 106 107 152 153
-42 106 128 152 174
-43 176 106 130 152
-44 154 107 108 153
-45 107 129 153 175
-46 177 107 131 153
-47 154 155 108 109
-48 154 176 108 130
-49 132 154 178 108
-50 110 155 156 109
-51 155 177 109 131
-52 133 155 179 109
-53 110 111 156 157
-54 110 132 156 178
-55 110 134 156 180
-56 111 112 157 158
-57 111 133 157 179
-58 111 135 157 181
-59 112 113 158 159
-60 112 134 158 180
-61 112 136 158 182
-62 113 114 159 160
-63 113 135 159 181
-64 113 137 159 183
-65 114 115 160 161
-66 114 136 160 182
-67 114 138 160 184
-68 115 116 161 162
-69 115 137 161 183
-70 116 117 162 163
-71 116 138 162 184
-72 117 118 163 164
-73 165 118 119 164
-74 165 166 119 120
-75 121 166 167 120
-76 121 122 167 168
-77 122 123 168 169
-78 123 124 169 170
-79 124 125 170 171
-80 125 126 171 172
-81 126 127 172 173
-82 127 128 173 174
-83 128 129 174 175
-84 176 129 130 175
-85 176 177 130 131
-86 132 177 178 131
-87 132 133 178 179
-88 133 134 179 180
-89 134 135 180 181
-90 135 136 181 182
-91 136 137 182 183
-92 137 138 183 184
-93 1 2 3 4
-94 1 5 6 7
-95 5 8 9 10
-96 11 12 13 8
-97 11 14 15 16
-98 14 17 18 19
-99 22 17 20 21
-100 23 24 25 20
-101 23 26 27 28
-102 26 29 30 31
-103 33 34 29 32
-104 35 36 37 32
-105 35 38 39 40
-106 38 41 42 43
-107 44 45 46 41
-108 44 47 48 49
-109 47 50 51 52
-110 55 50 53 54
-111 56 57 58 53
-112 56 59 60 61
-113 59 62 63 64
-114 66 67 62 65
-115 2 68 69 65
-116 68 70 71 6
-117 3 70 72 9
-118 12 72 7 73
-119 15 73 74 10
-120 13 18 74 75
-121 16 75 21 76
-122 77 24 19 76
-123 22 77 78 27
-124 78 79 25 30
-125 33 79 80 28
-126 36 80 81 31
-127 34 81 82 39
-128 37 82 83 42
-129 45 83 40 84
-130 48 84 85 43
-131 46 51 85 86
-132 49 86 54 87
-133 88 57 52 87
-134 55 88 89 60
-135 89 90 58 63
-136 66 90 91 61
-137 69 91 92 64
-138 67 4 92 71
-139 1 2 3 4
-140 1 5 6 7
-141 5 8 9 10
-142 11 12 13 8
-143 11 14 15 16
-144 14 17 18 19
-145 22 17 20 21
-146 23 24 25 20
-147 23 26 27 28
-148 26 29 30 31
-149 33 34 29 32
-150 35 36 37 32
-151 35 38 39 40
-152 38 41 42 43
-153 44 45 46 41
-154 44 47 48 49
-155 47 50 51 52
-156 55 50 53 54
-157 56 57 58 53
-158 56 59 60 61
-159 59 62 63 64
-160 66 67 62 65
-161 2 68 69 65
-162 68 70 71 6
-163 3 70 72 9
-164 12 72 7 73
-165 15 73 74 10
-166 13 18 74 75
-167 16 75 21 76
-168 77 24 19 76
-169 22 77 78 27
-170 78 79 25 30
-171 33 79 80 28
-172 36 80 81 31
-173 34 81 82 39
-174 37 82 83 42
-175 45 83 40 84
-176 48 84 85 43
-177 46 51 85 86
-178 49 86 54 87
-179 88 57 52 87
-180 55 88 89 60
-181 89 90 58 63
-182 66 90 91 61
-183 69 91 92 64
-184 67 4 92 71
0