C4graphGraph forms for C4 [ 186, 2 ] = C_186(1,61)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 186, 2 ] = C_186(1,61).

(I) Following is a form readable by MAGMA:

g:=Graph<186|{ {2, 3}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {1, 2}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {3, 4}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {7, 8}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {175, 176}, {143, 144}, {111, 112}, {47, 48}, {79, 80}, {2, 63}, {64, 125}, {66, 127}, {1, 62}, {159, 160}, {31, 32}, {65, 126}, {95, 96}, {3, 64}, {51, 112}, {47, 108}, {43, 104}, {39, 100}, {35, 96}, {7, 68}, {11, 72}, {15, 76}, {19, 80}, {23, 84}, {27, 88}, {31, 92}, {55, 116}, {59, 120}, {63, 124}, {4, 65}, {52, 113}, {46, 107}, {44, 105}, {38, 99}, {36, 97}, {6, 67}, {12, 73}, {14, 75}, {20, 81}, {22, 83}, {28, 89}, {30, 91}, {54, 115}, {60, 121}, {62, 123}, {5, 66}, {45, 106}, {37, 98}, {13, 74}, {21, 82}, {29, 90}, {53, 114}, {61, 122}, {8, 69}, {42, 103}, {40, 101}, {10, 71}, {24, 85}, {26, 87}, {56, 117}, {58, 119}, {9, 70}, {41, 102}, {25, 86}, {57, 118}, {16, 77}, {50, 111}, {48, 109}, {18, 79}, {17, 78}, {49, 110}, {2, 127}, {34, 95}, {32, 93}, {1, 126}, {33, 94}, {63, 64}, {3, 128}, {51, 176}, {47, 172}, {43, 168}, {39, 164}, {35, 160}, {7, 132}, {11, 136}, {15, 140}, {19, 144}, {23, 148}, {27, 152}, {31, 156}, {55, 180}, {59, 184}, {4, 129}, {46, 171}, {44, 169}, {38, 163}, {36, 161}, {6, 131}, {12, 137}, {14, 139}, {20, 145}, {22, 147}, {28, 153}, {30, 155}, {52, 177}, {54, 179}, {60, 185}, {5, 130}, {45, 170}, {37, 162}, {13, 138}, {21, 146}, {29, 154}, {53, 178}, {61, 186}, {8, 133}, {42, 167}, {40, 165}, {10, 135}, {24, 149}, {26, 151}, {56, 181}, {58, 183}, {9, 134}, {41, 166}, {25, 150}, {57, 182}, {16, 141}, {50, 175}, {48, 173}, {18, 143}, {17, 142}, {49, 174}, {1, 186}, {32, 157}, {34, 159}, {33, 158}, {67, 128}, {123, 184}, {119, 180}, {115, 176}, {111, 172}, {107, 168}, {103, 164}, {71, 132}, {75, 136}, {79, 140}, {83, 144}, {87, 148}, {91, 152}, {95, 156}, {99, 160}, {68, 129}, {124, 185}, {118, 179}, {116, 177}, {110, 171}, {108, 169}, {102, 163}, {70, 131}, {76, 137}, {78, 139}, {84, 145}, {86, 147}, {92, 153}, {94, 155}, {100, 161}, {69, 130}, {125, 186}, {117, 178}, {109, 170}, {77, 138}, {85, 146}, {93, 154}, {101, 162}, {72, 133}, {122, 183}, {120, 181}, {106, 167}, {104, 165}, {74, 135}, {88, 149}, {90, 151}, {73, 134}, {121, 182}, {105, 166}, {89, 150}, {80, 141}, {114, 175}, {112, 173}, {82, 143}, {81, 142}, {113, 174}, {96, 157}, {98, 159}, {97, 158}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 126)(3, 65)(5, 129)(6, 68)(8, 132)(9, 71)(11, 135)(12, 74)(14, 138)(15, 77)(17, 141)(18, 80)(20, 144)(21, 83)(23, 147)(24, 86)(26, 150)(27, 89)(29, 153)(30, 92)(32, 156)(33, 95)(35, 159)(36, 98)(38, 162)(39, 101)(41, 165)(42, 104)(44, 168)(45, 107)(47, 171)(48, 110)(50, 174)(51, 113)(53, 177)(54, 116)(56, 180)(57, 119)(59, 183)(60, 122)(62, 186)(63, 125)(66, 128)(69, 131)(72, 134)(75, 137)(78, 140)(81, 143)(84, 146)(87, 149)(90, 152)(93, 155)(96, 158)(99, 161)(102, 164)(105, 167)(108, 170)(111, 173)(114, 176)(117, 179)(120, 182)(123, 185)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186)
c: (2, 62)(3, 123)(4, 184)(5, 59)(6, 120)(7, 181)(8, 56)(9, 117)(10, 178)(11, 53)(12, 114)(13, 175)(14, 50)(15, 111)(16, 172)(17, 47)(18, 108)(19, 169)(20, 44)(21, 105)(22, 166)(23, 41)(24, 102)(25, 163)(26, 38)(27, 99)(28, 160)(29, 35)(30, 96)(31, 157)(33, 93)(34, 154)(36, 90)(37, 151)(39, 87)(40, 148)(42, 84)(43, 145)(45, 81)(46, 142)(48, 78)(49, 139)(51, 75)(52, 136)(54, 72)(55, 133)(57, 69)(58, 130)(60, 66)(61, 127)(64, 124)(65, 185)(67, 121)(68, 182)(70, 118)(71, 179)(73, 115)(74, 176)(76, 112)(77, 173)(79, 109)(80, 170)(82, 106)(83, 167)(85, 103)(86, 164)(88, 100)(89, 161)(91, 97)(92, 158)(95, 155)(98, 152)(101, 149)(104, 146)(107, 143)(110, 140)(113, 137)(116, 134)(119, 131)(122, 128)(126, 186)(129, 183)(132, 180)(135, 177)(138, 174)(141, 171)(144, 168)(147, 165)(150, 162)(153, 159)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 186, 2 ]
186
-1 2 126 62 186
-2 1 3 127 63
-3 2 4 128 64
-4 3 5 129 65
-5 66 4 6 130
-6 67 5 7 131
-7 132 68 6 8
-8 133 69 7 9
-9 134 70 8 10
-10 11 135 71 9
-11 12 136 72 10
-12 11 13 137 73
-13 12 14 138 74
-14 13 15 139 75
-15 14 16 140 76
-16 77 15 17 141
-17 78 16 18 142
-18 143 79 17 19
-19 144 80 18 20
-20 145 81 19 21
-21 22 146 82 20
-22 23 147 83 21
-23 22 24 148 84
-24 23 25 149 85
-25 24 26 150 86
-26 25 27 151 87
-27 88 26 28 152
-28 89 27 29 153
-29 154 90 28 30
-30 155 91 29 31
-31 156 92 30 32
-32 33 157 93 31
-33 34 158 94 32
-34 33 35 159 95
-35 34 36 160 96
-36 35 37 161 97
-37 36 38 162 98
-38 99 37 39 163
-39 100 38 40 164
-40 165 101 39 41
-41 166 102 40 42
-42 167 103 41 43
-43 44 168 104 42
-44 45 169 105 43
-45 44 46 170 106
-46 45 47 171 107
-47 46 48 172 108
-48 47 49 173 109
-49 110 48 50 174
-50 111 49 51 175
-51 176 112 50 52
-52 177 113 51 53
-53 178 114 52 54
-54 55 179 115 53
-55 56 180 116 54
-56 55 57 181 117
-57 56 58 182 118
-58 57 59 183 119
-59 58 60 184 120
-60 121 59 61 185
-61 122 60 62 186
-62 1 123 61 63
-63 2 124 62 64
-64 3 125 63 65
-65 66 4 126 64
-66 67 5 127 65
-67 66 68 6 128
-68 67 69 7 129
-69 68 70 8 130
-70 69 71 9 131
-71 132 70 72 10
-72 11 133 71 73
-73 12 134 72 74
-74 13 135 73 75
-75 14 136 74 76
-76 77 15 137 75
-77 78 16 138 76
-78 77 79 17 139
-79 78 80 18 140
-80 79 81 19 141
-81 80 82 20 142
-82 143 81 83 21
-83 22 144 82 84
-84 23 145 83 85
-85 24 146 84 86
-86 25 147 85 87
-87 88 26 148 86
-88 89 27 149 87
-89 88 90 28 150
-90 89 91 29 151
-91 90 92 30 152
-92 91 93 31 153
-93 154 92 94 32
-94 33 155 93 95
-95 34 156 94 96
-96 35 157 95 97
-97 36 158 96 98
-98 99 37 159 97
-99 100 38 160 98
-100 99 101 39 161
-101 100 102 40 162
-102 101 103 41 163
-103 102 104 42 164
-104 165 103 105 43
-105 44 166 104 106
-106 45 167 105 107
-107 46 168 106 108
-108 47 169 107 109
-109 110 48 170 108
-110 111 49 171 109
-111 110 112 50 172
-112 111 113 51 173
-113 112 114 52 174
-114 113 115 53 175
-115 176 114 116 54
-116 55 177 115 117
-117 56 178 116 118
-118 57 179 117 119
-119 58 180 118 120
-120 121 59 181 119
-121 122 60 182 120
-122 121 123 61 183
-123 122 124 62 184
-124 123 125 63 185
-125 124 126 64 186
-126 1 125 127 65
-127 66 2 126 128
-128 67 3 127 129
-129 68 4 128 130
-130 69 5 129 131
-131 132 70 6 130
-132 133 71 7 131
-133 132 134 72 8
-134 133 135 73 9
-135 134 136 74 10
-136 11 135 137 75
-137 12 136 138 76
-138 77 13 137 139
-139 78 14 138 140
-140 79 15 139 141
-141 80 16 140 142
-142 143 81 17 141
-143 144 82 18 142
-144 143 145 83 19
-145 144 146 84 20
-146 145 147 85 21
-147 22 146 148 86
-148 23 147 149 87
-149 88 24 148 150
-150 89 25 149 151
-151 90 26 150 152
-152 91 27 151 153
-153 154 92 28 152
-154 155 93 29 153
-155 154 156 94 30
-156 155 157 95 31
-157 156 158 96 32
-158 33 157 159 97
-159 34 158 160 98
-160 99 35 159 161
-161 100 36 160 162
-162 101 37 161 163
-163 102 38 162 164
-164 165 103 39 163
-165 166 104 40 164
-166 165 167 105 41
-167 166 168 106 42
-168 167 169 107 43
-169 44 168 170 108
-170 45 169 171 109
-171 110 46 170 172
-172 111 47 171 173
-173 112 48 172 174
-174 113 49 173 175
-175 176 114 50 174
-176 177 115 51 175
-177 176 178 116 52
-178 177 179 117 53
-179 178 180 118 54
-180 55 179 181 119
-181 56 180 182 120
-182 121 57 181 183
-183 122 58 182 184
-184 123 59 183 185
-185 124 60 184 186
-186 1 125 61 185
0

**************