[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 188, 1 ] =
W(94,2).
(I) Following is a form readable by MAGMA:
g:=Graph<188|{ {2, 3}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178,
179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167},
{164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {68,
69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52,
53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9},
{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25},
{26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41},
{70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85},
{86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100,
101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113},
{114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126,
127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139},
{140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152,
153}, {1, 2}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165,
166}, {161, 162}, {157, 158}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50},
{45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86},
{89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114},
{117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141,
142}, {145, 146}, {149, 150}, {153, 154}, {3, 4}, {187, 188}, {179, 180}, {171,
172}, {163, 164}, {155, 156}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12},
{19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107,
108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8}, {183,
184}, {167, 168}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104},
{119, 120}, {135, 136}, {151, 152}, {15, 16}, {175, 176}, {47, 48}, {79, 80},
{111, 112}, {143, 144}, {31, 32}, {159, 160}, {95, 96}, {2, 95}, {32, 125}, {34,
127}, {1, 94}, {32, 127}, {33, 126}, {1, 96}, {3, 98}, {5, 100}, {7, 102}, {9,
104}, {11, 106}, {13, 108}, {15, 110}, {17, 112}, {19, 114}, {21, 116}, {23,
118}, {25, 120}, {27, 122}, {29, 124}, {31, 126}, {2, 97}, {3, 96}, {6, 101},
{7, 100}, {10, 105}, {11, 104}, {14, 109}, {15, 108}, {18, 113}, {19, 112}, {22,
117}, {23, 116}, {26, 121}, {27, 120}, {30, 125}, {31, 124}, {4, 97}, {6, 99},
{12, 105}, {14, 107}, {20, 113}, {22, 115}, {28, 121}, {30, 123}, {4, 99}, {5,
98}, {12, 107}, {13, 106}, {20, 115}, {21, 114}, {28, 123}, {29, 122}, {8, 101},
{10, 103}, {24, 117}, {26, 119}, {8, 103}, {9, 102}, {24, 119}, {25, 118}, {16,
109}, {18, 111}, {16, 111}, {63, 64}, {17, 110}, {33, 128}, {63, 158}, {61,
156}, {59, 154}, {57, 152}, {55, 150}, {53, 148}, {51, 146}, {49, 144}, {47,
142}, {45, 140}, {43, 138}, {41, 136}, {35, 130}, {37, 132}, {39, 134}, {34,
129}, {63, 156}, {62, 157}, {59, 152}, {58, 153}, {55, 148}, {54, 149}, {51,
144}, {50, 145}, {47, 140}, {46, 141}, {43, 136}, {42, 137}, {35, 128}, {38,
133}, {39, 132}, {36, 129}, {62, 155}, {60, 153}, {54, 147}, {52, 145}, {46,
139}, {44, 137}, {38, 131}, {36, 131}, {61, 154}, {60, 155}, {53, 146}, {52,
147}, {45, 138}, {44, 139}, {37, 130}, {40, 133}, {58, 151}, {56, 149}, {42,
135}, {40, 135}, {57, 150}, {56, 151}, {41, 134}, {1, 188}, {50, 143}, {48,
141}, {48, 143}, {49, 142}, {64, 157}, {66, 159}, {64, 159}, {65, 158}, {65,
160}, {67, 162}, {69, 164}, {71, 166}, {73, 168}, {75, 170}, {77, 172}, {79,
174}, {81, 176}, {83, 178}, {85, 180}, {87, 182}, {89, 184}, {91, 186}, {93,
188}, {66, 161}, {67, 160}, {70, 165}, {71, 164}, {74, 169}, {75, 168}, {78,
173}, {79, 172}, {82, 177}, {83, 176}, {86, 181}, {87, 180}, {90, 185}, {91,
184}, {95, 188}, {68, 161}, {70, 163}, {76, 169}, {78, 171}, {84, 177}, {86,
179}, {92, 185}, {94, 187}, {68, 163}, {69, 162}, {76, 171}, {77, 170}, {84,
179}, {85, 178}, {92, 187}, {93, 186}, {72, 165}, {74, 167}, {88, 181}, {90,
183}, {72, 167}, {73, 166}, {88, 183}, {89, 182}, {80, 173}, {82, 175}, {80,
175}, {81, 174}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (84, 178) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (77, 171)
c: (68, 162)
d: (28, 122)
e: (39, 133)
f: (22, 116)
g: (12, 106)
h: (4, 98)
m: (10, 104)
n1: (31, 125)
a1: (83, 177)
b1: (87, 181)
c1: (14, 108)
d1: (78, 172)
e1: (23, 117)
f1: (26, 120)
g1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94)(95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188)
h1: (34, 128)
m1: (72, 166)
n2: (88, 182)
a2: (27, 121)
b2: (59, 153)
c2: (74, 168)
d2: (67, 161)
e2: (55, 149)
f2: (7, 101)
g2: (60, 154)
h2: (43, 137)
m2: (75, 169)
n3: (48, 142)
a3: (94, 188)
b3: (63, 157)
c3: (33, 127)
d3: (2, 96)
e3: (17, 111)
f3: (73, 167)
g3: (41, 135)
h3: (9, 103)
m3: (57, 151)
n4: (70, 164)
a4: (71, 165)
b4: (50, 144)
c4: (2, 94)(3, 93)(4, 92)(5, 91)(6, 90)(7, 89)(8, 88)(9, 87)(10, 86)(11, 85)(12,
84)(13, 83)(14, 82)(15, 81)(16, 80)(17, 79)(18, 78)(19, 77)(20, 76)(21, 75)(22,
74)(23, 73)(24, 72)(25, 71)(26, 70)(27, 69)(28, 68)(29, 67)(30, 66)(31, 65)(32,
64)(33, 63)(34, 62)(35, 61)(36, 60)(37, 59)(38, 58)(39, 57)(40, 56)(41, 55)(42,
54)(43, 53)(44, 52)(45, 51)(46, 50)(47, 49)(96, 188)(97, 187)(98, 186)(99,
185)(100, 184)(101, 183)(102, 182)(103, 181)(104, 180)(105, 179)(106, 178)(107,
177)(108, 176)(109, 175)(110, 174)(111, 173)(112, 172)(113, 171)(114, 170)(115,
169)(116, 168)(117, 167)(118, 166)(119, 165)(120, 164)(121, 163)(122, 162)(123,
161)(124, 160)(125, 159)(126, 158)(127, 157)(128, 156)(129, 155)(130, 154)(131,
153)(132, 152)(133, 151)(134, 150)(135, 149)(136, 148)(137, 147)(138, 146)(139,
145)(140, 144)(141, 143)
d4: (24, 118)
e4: (82, 176)
f4: (53, 147)
g4: (93, 187)
h4: (40, 134)
m4: (81, 175)
n5: (16, 110)
a5: (19, 113)
b5: (61, 155)
c5: (49, 143)
d5: (15, 109)
e5: (65, 159)
f5: (20, 114)
g5: (92, 186)
h5: (58, 152)
m5: (85, 179)
n6: (21, 115)
a6: (38, 132)
b6: (29, 123)
c6: (76, 170)
d6: (30, 124)
e6: (89, 183)
f6: (80, 174)
g6: (47, 141)
h6: (56, 150)
m6: (35, 129)
n7: (32, 126)
a7: (11, 105)
b7: (69, 163)
c7: (44, 138)
d7: (42, 136)
e7: (3, 97)
f7: (45, 139)
g7: (51, 145)
h7: (91, 185)
m7: (52, 146)
n8: (6, 100)
a8: (18, 112)
b8: (54, 148)
c8: (25, 119)
d8: (86, 180)
e8: (64, 158)
f8: (37, 131)
g8: (36, 130)
h8: (13, 107)
m8: (62, 156)
n9: (8, 102)
a9: (79, 173)
b9: (66, 160)
c9: (90, 184)
d9: (5, 99)
C4[ 188, 1 ]
188
-1 188 2 94 96
-2 1 3 95 97
-3 2 4 96 98
-4 99 3 5 97
-5 100 4 6 98
-6 99 101 5 7
-7 100 102 6 8
-8 101 103 7 9
-9 102 104 8 10
-10 11 103 105 9
-11 12 104 106 10
-12 11 13 105 107
-13 12 14 106 108
-14 13 15 107 109
-15 110 14 16 108
-16 111 15 17 109
-17 110 112 16 18
-18 111 113 17 19
-19 112 114 18 20
-20 113 115 19 21
-21 22 114 116 20
-22 23 115 117 21
-23 22 24 116 118
-24 23 25 117 119
-25 24 26 118 120
-26 121 25 27 119
-27 122 26 28 120
-28 121 123 27 29
-29 122 124 28 30
-30 123 125 29 31
-31 124 126 30 32
-32 33 125 127 31
-33 34 126 128 32
-34 33 35 127 129
-35 34 36 128 130
-36 35 37 129 131
-37 132 36 38 130
-38 133 37 39 131
-39 132 134 38 40
-40 133 135 39 41
-41 134 136 40 42
-42 135 137 41 43
-43 44 136 138 42
-44 45 137 139 43
-45 44 46 138 140
-46 45 47 139 141
-47 46 48 140 142
-48 143 47 49 141
-49 144 48 50 142
-50 143 145 49 51
-51 144 146 50 52
-52 145 147 51 53
-53 146 148 52 54
-54 55 147 149 53
-55 56 148 150 54
-56 55 57 149 151
-57 56 58 150 152
-58 57 59 151 153
-59 154 58 60 152
-60 155 59 61 153
-61 154 156 60 62
-62 155 157 61 63
-63 156 158 62 64
-64 157 159 63 65
-65 66 158 160 64
-66 67 159 161 65
-67 66 68 160 162
-68 67 69 161 163
-69 68 70 162 164
-70 165 69 71 163
-71 166 70 72 164
-72 165 167 71 73
-73 166 168 72 74
-74 167 169 73 75
-75 168 170 74 76
-76 77 169 171 75
-77 78 170 172 76
-78 77 79 171 173
-79 78 80 172 174
-80 79 81 173 175
-81 176 80 82 174
-82 177 81 83 175
-83 176 178 82 84
-84 177 179 83 85
-85 178 180 84 86
-86 179 181 85 87
-87 88 180 182 86
-88 89 181 183 87
-89 88 90 182 184
-90 89 91 183 185
-91 90 92 184 186
-92 187 91 93 185
-93 188 92 94 186
-94 187 1 93 95
-95 188 2 94 96
-96 1 3 95 97
-97 2 4 96 98
-98 99 3 5 97
-99 100 4 6 98
-100 99 101 5 7
-101 100 102 6 8
-102 101 103 7 9
-103 102 104 8 10
-104 11 103 105 9
-105 12 104 106 10
-106 11 13 105 107
-107 12 14 106 108
-108 13 15 107 109
-109 110 14 16 108
-110 111 15 17 109
-111 110 112 16 18
-112 111 113 17 19
-113 112 114 18 20
-114 113 115 19 21
-115 22 114 116 20
-116 23 115 117 21
-117 22 24 116 118
-118 23 25 117 119
-119 24 26 118 120
-120 121 25 27 119
-121 122 26 28 120
-122 121 123 27 29
-123 122 124 28 30
-124 123 125 29 31
-125 124 126 30 32
-126 33 125 127 31
-127 34 126 128 32
-128 33 35 127 129
-129 34 36 128 130
-130 35 37 129 131
-131 132 36 38 130
-132 133 37 39 131
-133 132 134 38 40
-134 133 135 39 41
-135 134 136 40 42
-136 135 137 41 43
-137 44 136 138 42
-138 45 137 139 43
-139 44 46 138 140
-140 45 47 139 141
-141 46 48 140 142
-142 143 47 49 141
-143 144 48 50 142
-144 143 145 49 51
-145 144 146 50 52
-146 145 147 51 53
-147 146 148 52 54
-148 55 147 149 53
-149 56 148 150 54
-150 55 57 149 151
-151 56 58 150 152
-152 57 59 151 153
-153 154 58 60 152
-154 155 59 61 153
-155 154 156 60 62
-156 155 157 61 63
-157 156 158 62 64
-158 157 159 63 65
-159 66 158 160 64
-160 67 159 161 65
-161 66 68 160 162
-162 67 69 161 163
-163 68 70 162 164
-164 165 69 71 163
-165 166 70 72 164
-166 165 167 71 73
-167 166 168 72 74
-168 167 169 73 75
-169 168 170 74 76
-170 77 169 171 75
-171 78 170 172 76
-172 77 79 171 173
-173 78 80 172 174
-174 79 81 173 175
-175 176 80 82 174
-176 177 81 83 175
-177 176 178 82 84
-178 177 179 83 85
-179 178 180 84 86
-180 179 181 85 87
-181 88 180 182 86
-182 89 181 183 87
-183 88 90 182 184
-184 89 91 183 185
-185 90 92 184 186
-186 187 91 93 185
-187 188 92 94 186
-188 187 1 93 95
0