[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 1 ] =
W(96,2).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {2, 3}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182,
183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171},
{168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156,
157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145},
{142, 143}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54,
55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4,
5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21},
{22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81},
{82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97},
{98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110,
111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
{124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136,
137}, {138, 139}, {140, 141}, {1, 2}, {189, 190}, {185, 186}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154},
{149, 150}, {145, 146}, {141, 142}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49,
50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25,
26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85,
86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113,
114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138},
{3, 4}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148},
{59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {67, 68},
{75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124},
{131, 132}, {139, 140}, {7, 8}, {183, 184}, {167, 168}, {151, 152}, {55, 56},
{39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15,
16}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159,
160}, {95, 96}, {32, 127}, {1, 96}, {2, 99}, {3, 98}, {4, 101}, {5, 100}, {6,
103}, {7, 102}, {8, 105}, {9, 104}, {10, 107}, {11, 106}, {12, 109}, {13, 108},
{14, 111}, {15, 110}, {16, 113}, {17, 112}, {18, 115}, {19, 114}, {20, 117},
{21, 116}, {22, 119}, {23, 118}, {24, 121}, {25, 120}, {26, 123}, {27, 122},
{28, 125}, {29, 124}, {30, 127}, {31, 126}, {1, 98}, {2, 97}, {5, 102}, {6,
101}, {9, 106}, {10, 105}, {13, 110}, {14, 109}, {17, 114}, {18, 113}, {21,
118}, {22, 117}, {25, 122}, {26, 121}, {29, 126}, {30, 125}, {3, 100}, {4, 99},
{11, 108}, {12, 107}, {19, 116}, {20, 115}, {27, 124}, {28, 123}, {7, 104}, {8,
103}, {23, 120}, {24, 119}, {15, 112}, {191, 192}, {63, 64}, {16, 111}, {31,
128}, {63, 160}, {95, 192}, {32, 129}, {63, 158}, {62, 159}, {61, 156}, {60,
157}, {59, 154}, {58, 155}, {57, 152}, {56, 153}, {55, 150}, {54, 151}, {53,
148}, {52, 149}, {51, 146}, {50, 147}, {49, 144}, {48, 145}, {47, 142}, {46,
143}, {45, 140}, {44, 141}, {43, 138}, {42, 139}, {41, 136}, {40, 137}, {39,
134}, {33, 128}, {34, 131}, {35, 130}, {36, 133}, {37, 132}, {38, 135}, {97,
192}, {33, 130}, {62, 157}, {61, 158}, {58, 153}, {57, 154}, {54, 149}, {53,
150}, {50, 145}, {49, 146}, {46, 141}, {45, 142}, {42, 137}, {41, 138}, {34,
129}, {37, 134}, {38, 133}, {35, 132}, {60, 155}, {59, 156}, {52, 147}, {51,
148}, {44, 139}, {43, 140}, {36, 131}, {39, 136}, {56, 151}, {55, 152}, {40,
135}, {47, 144}, {48, 143}, {1, 192}, {64, 159}, {96, 191}, {64, 161}, {65,
160}, {66, 163}, {67, 162}, {68, 165}, {69, 164}, {70, 167}, {71, 166}, {72,
169}, {73, 168}, {74, 171}, {75, 170}, {76, 173}, {77, 172}, {78, 175}, {79,
174}, {80, 177}, {81, 176}, {82, 179}, {83, 178}, {84, 181}, {85, 180}, {86,
183}, {87, 182}, {88, 185}, {89, 184}, {90, 187}, {91, 186}, {92, 189}, {93,
188}, {94, 191}, {95, 190}, {65, 162}, {66, 161}, {69, 166}, {70, 165}, {73,
170}, {74, 169}, {77, 174}, {78, 173}, {81, 178}, {82, 177}, {85, 182}, {86,
181}, {89, 186}, {90, 185}, {93, 190}, {94, 189}, {67, 164}, {68, 163}, {75,
172}, {76, 171}, {83, 180}, {84, 179}, {91, 188}, {92, 187}, {71, 168}, {72,
167}, {87, 184}, {88, 183}, {79, 176}, {80, 175}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (65, 161) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (88, 184)
c: (67, 163)
d: (5, 101)
e: (33, 129)
f: (19, 115)
g: (41, 137)
h: (16, 112)
m: (61, 157)
n1: (79, 175)
a1: (8, 104)
b1: (54, 150)
c1: (78, 174)
d1: (73, 169)
e1: (56, 152)
f1: (59, 155)
g1: (66, 162)
h1: (45, 141)
m1: (58, 154)
n2: (63, 159)
a2: (10, 106)
b2: (6, 102)
c2: (91, 187)
d2: (12, 108)
e2: (2, 98)
f2: (48, 144)
g2: (85, 181)
h2: (87, 183)
m2: (7, 103)
n3: (18, 114)
a3: (62, 158)
b3: (75, 171)
c3: (22, 118)
d3: (53, 149)
e3: (42, 138)
f3: (2, 96)(3, 95)(4, 94)(5, 93)(6, 92)(7, 91)(8, 90)(9, 89)(10, 88)(11, 87)(12,
86)(13, 85)(14, 84)(15, 83)(16, 82)(17, 81)(18, 80)(19, 79)(20, 78)(21, 77)(22,
76)(23, 75)(24, 74)(25, 73)(26, 72)(27, 71)(28, 70)(29, 69)(30, 68)(31, 67)(32,
66)(33, 65)(34, 64)(35, 63)(36, 62)(37, 61)(38, 60)(39, 59)(40, 58)(41, 57)(42,
56)(43, 55)(44, 54)(45, 53)(46, 52)(47, 51)(48, 50)(98, 192)(99, 191)(100,
190)(101, 189)(102, 188)(103, 187)(104, 186)(105, 185)(106, 184)(107, 183)(108,
182)(109, 181)(110, 180)(111, 179)(112, 178)(113, 177)(114, 176)(115, 175)(116,
174)(117, 173)(118, 172)(119, 171)(120, 170)(121, 169)(122, 168)(123, 167)(124,
166)(125, 165)(126, 164)(127, 163)(128, 162)(129, 161)(130, 160)(131, 159)(132,
158)(133, 157)(134, 156)(135, 155)(136, 154)(137, 153)(138, 152)(139, 151)(140,
150)(141, 149)(142, 148)(143, 147)(144, 146)
g3: (95, 191)
h3: (49, 145)
m3: (40, 136)
n4: (38, 134)
a4: (27, 123)
b4: (4, 100)
c4: (28, 124)
d4: (21, 117)
e4: (86, 182)
f4: (29, 125)
g4: (92, 188)
h4: (23, 119)
m4: (69, 165)
n5: (20, 116)
a5: (14, 110)
b5: (96, 192)
c5: (30, 126)
d5: (46, 142)
e5: (83, 179)
f5: (90, 186)
g5: (32, 128)
h5: (52, 148)
m5: (50, 146)
n6: (80, 176)
a6: (72, 168)
b6: (44, 140)
c6: (31, 127)
d6: (9, 105)
e6: (84, 180)
f6: (77, 173)
g6: (82, 178)
h6: (70, 166)
m6: (74, 170)
n7: (26, 122)
a7: (11, 107)
b7: (25, 121)
c7: (24, 120)
d7: (13, 109)
e7: (94, 190)
f7: (76, 172)
g7: (81, 177)
h7: (71, 167)
m7: (17, 113)
n8: (35, 131)
a8: (68, 164)
b8: (3, 99)
c8: (51, 147)
d8: (15, 111)
e8: (39, 135)
f8: (37, 133)
g8: (34, 130)
h8: (55, 151)
m8: (60, 156)
n9: (36, 132)
a9: (64, 160)
b9: (43, 139)
c9: (89, 185)
d9: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192)
e9: (57, 153)
f9: (93, 189)
C4[ 192, 1 ]
192
-1 2 192 96 98
-2 99 1 3 97
-3 100 2 4 98
-4 99 101 3 5
-5 100 102 4 6
-6 101 103 5 7
-7 102 104 6 8
-8 103 105 7 9
-9 104 106 8 10
-10 11 105 107 9
-11 12 106 108 10
-12 11 13 107 109
-13 110 12 14 108
-14 111 13 15 109
-15 110 112 14 16
-16 111 113 15 17
-17 112 114 16 18
-18 113 115 17 19
-19 114 116 18 20
-20 115 117 19 21
-21 22 116 118 20
-22 23 117 119 21
-23 22 24 118 120
-24 121 23 25 119
-25 122 24 26 120
-26 121 123 25 27
-27 122 124 26 28
-28 123 125 27 29
-29 124 126 28 30
-30 125 127 29 31
-31 126 128 30 32
-32 33 127 129 31
-33 34 128 130 32
-34 33 35 129 131
-35 132 34 36 130
-36 133 35 37 131
-37 132 134 36 38
-38 133 135 37 39
-39 134 136 38 40
-40 135 137 39 41
-41 136 138 40 42
-42 137 139 41 43
-43 44 138 140 42
-44 45 139 141 43
-45 44 46 140 142
-46 143 45 47 141
-47 144 46 48 142
-48 143 145 47 49
-49 144 146 48 50
-50 145 147 49 51
-51 146 148 50 52
-52 147 149 51 53
-53 148 150 52 54
-54 55 149 151 53
-55 56 150 152 54
-56 55 57 151 153
-57 154 56 58 152
-58 155 57 59 153
-59 154 156 58 60
-60 155 157 59 61
-61 156 158 60 62
-62 157 159 61 63
-63 158 160 62 64
-64 159 161 63 65
-65 66 160 162 64
-66 67 161 163 65
-67 66 68 162 164
-68 165 67 69 163
-69 166 68 70 164
-70 165 167 69 71
-71 166 168 70 72
-72 167 169 71 73
-73 168 170 72 74
-74 169 171 73 75
-75 170 172 74 76
-76 77 171 173 75
-77 78 172 174 76
-78 77 79 173 175
-79 176 78 80 174
-80 177 79 81 175
-81 176 178 80 82
-82 177 179 81 83
-83 178 180 82 84
-84 179 181 83 85
-85 180 182 84 86
-86 181 183 85 87
-87 88 182 184 86
-88 89 183 185 87
-89 88 90 184 186
-90 187 89 91 185
-91 188 90 92 186
-92 187 189 91 93
-93 188 190 92 94
-94 189 191 93 95
-95 190 192 94 96
-96 1 191 95 97
-97 2 192 96 98
-98 99 1 3 97
-99 100 2 4 98
-100 99 101 3 5
-101 100 102 4 6
-102 101 103 5 7
-103 102 104 6 8
-104 103 105 7 9
-105 104 106 8 10
-106 11 105 107 9
-107 12 106 108 10
-108 11 13 107 109
-109 110 12 14 108
-110 111 13 15 109
-111 110 112 14 16
-112 111 113 15 17
-113 112 114 16 18
-114 113 115 17 19
-115 114 116 18 20
-116 115 117 19 21
-117 22 116 118 20
-118 23 117 119 21
-119 22 24 118 120
-120 121 23 25 119
-121 122 24 26 120
-122 121 123 25 27
-123 122 124 26 28
-124 123 125 27 29
-125 124 126 28 30
-126 125 127 29 31
-127 126 128 30 32
-128 33 127 129 31
-129 34 128 130 32
-130 33 35 129 131
-131 132 34 36 130
-132 133 35 37 131
-133 132 134 36 38
-134 133 135 37 39
-135 134 136 38 40
-136 135 137 39 41
-137 136 138 40 42
-138 137 139 41 43
-139 44 138 140 42
-140 45 139 141 43
-141 44 46 140 142
-142 143 45 47 141
-143 144 46 48 142
-144 143 145 47 49
-145 144 146 48 50
-146 145 147 49 51
-147 146 148 50 52
-148 147 149 51 53
-149 148 150 52 54
-150 55 149 151 53
-151 56 150 152 54
-152 55 57 151 153
-153 154 56 58 152
-154 155 57 59 153
-155 154 156 58 60
-156 155 157 59 61
-157 156 158 60 62
-158 157 159 61 63
-159 158 160 62 64
-160 159 161 63 65
-161 66 160 162 64
-162 67 161 163 65
-163 66 68 162 164
-164 165 67 69 163
-165 166 68 70 164
-166 165 167 69 71
-167 166 168 70 72
-168 167 169 71 73
-169 168 170 72 74
-170 169 171 73 75
-171 170 172 74 76
-172 77 171 173 75
-173 78 172 174 76
-174 77 79 173 175
-175 176 78 80 174
-176 177 79 81 175
-177 176 178 80 82
-178 177 179 81 83
-179 178 180 82 84
-180 179 181 83 85
-181 180 182 84 86
-182 181 183 85 87
-183 88 182 184 86
-184 89 183 185 87
-185 88 90 184 186
-186 187 89 91 185
-187 188 90 92 186
-188 187 189 91 93
-189 188 190 92 94
-190 189 191 93 95
-191 190 192 94 96
-192 1 191 95 97
0