C4graphConstructions for C4[ 192, 9 ] = {4,4}_<26,22>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 192, 9 ]. See Glossary for some detail.

{4, 4}_< 26, 22> = MPS( 48, 8; 1) = MPS( 48, 8; 3)

      = PS( 4, 96; 23) = PS( 4, 96; 25) = MPS( 4, 96; 1)

      = MPS( 4, 96; 47) = R_ 96( 2, 49) = R_ 96( 46, 1)

      = R_ 96( 50, 1) = R_ 96( 94, 49) = PL(MC3( 4, 24, 1, 13, 13, 10, 1), [4^24, 48^2])

      = PL(MC3( 4, 24, 1, 13, 13, 22, 1), [4^24, 48^2]) = PL(MC3( 6, 16, 1, 9, 9, 6, 1), [4^24, 48^2]) = PL(MC3( 6, 16, 1, 9, 9, 14, 1), [4^24, 48^2])

      = PL(MC3( 8, 12, 1, 7, 7, 10, 1), [4^24, 48^2]) = PL(MC3( 12, 8, 1, 5, 5, 2, 1), [4^24, 48^2]) = PL(MC3( 12, 8, 1, 5, 5, 6, 1), [4^24, 48^2])

      = PL(MBr( 2, 48; 23)) = PL(BC_48({ 0, 24 }, { 1, 23 }) = UG(ATD[192, 74])

      = UG(ATD[192, 75]) = UG(ATD[192, 76]) = MG(Rmap(192,267) { 8, 96| 4}_ 96)

      = DG(Rmap(192,267) { 8, 96| 4}_ 96) = MG(Rmap(192,268) { 8, 96| 2}_ 96) = DG(Rmap(192,268) { 8, 96| 2}_ 96)

      = DG(Rmap(192,269) { 96, 8| 4}_ 96) = DG(Rmap(192,270) { 96, 8| 2}_ 96) = BGCG(W( 24, 2); K2;{5, 6})

      = AT[192, 80]

Cyclic coverings

mod 96:
12
1 1 95 0 46
2 0 50 1 95

mod 96:
12
1 1 95 0 2
2 0 94 47 49