C4graphConstructions for C4[ 192, 24 ] = PL(MSY(4,24,11,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 192, 24 ]. See Glossary for some detail.

PL(MSY( 4, 24, 11, 0)) = PL(MSY( 4, 24, 13, 0)) = PL(MC3( 4, 24, 1, 23, 11, 0, 1), [4^24, 24^4])

      = PL(MC3( 4, 24, 1, 23, 13, 0, 1), [4^24, 24^4]) = PL(KE_ 24( 1, 13, 2, 13, 1), [4^24, 24^4]) = PL(Curtain_ 24( 1, 11, 13, 23, 24), [4^24, 24^4])

      = PL(Br( 4, 24; 11)) = PL(ATD[ 24, 13]#DCyc[ 4]) = PL(CS(W( 12, 2)[ 24^ 2], 0))

      = PL(CSI(W( 12, 2)[ 24^ 2], 4)) = BGCG(W( 12, 2), C_ 4, {2', 3'}) = SS[192, 17]

     

Cyclic coverings

mod 24:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 11 0 - 0
3 - - - - 11 - 9 0 23
4 - - - - - 21 9 20 23
5 0 0 13 13 - - - - -
6 0 23 0 - 3 - - - -
7 0 - 15 4 15 - - - -
8 - 0 0 1 1 - - - -

mod 24:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 11 0 - 10
3 - - - - - 0 0 23 22
4 - - - - - 0 0 13 12
5 0 23 0 13 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 1 0 11 - - - -
8 0 14 2 12 - - - -

mod 24:
12345678
1 - - - - 0 1 0 23 - -
2 - - - - 14 0 0 0
3 - - - - 12 0 0 22
4 - - - - - - 0 23 10 11
5 0 23 10 12 - - - - -
6 0 1 0 0 - - - - -
7 - 0 0 0 1 - - - -
8 - 0 2 13 14 - - - -

mod 24:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 11 0 11 -
3 - - - - - - 0 1 0 1
4 - - - - 0 11 - - 0 11
5 0 23 - - 0 13 - - - -
6 0 23 0 13 - - - - - -
7 - 0 13 0 23 - - - - -
8 - - 0 23 0 13 - - - -

mod 24:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 13 14
4 - - - - 23 0 13 12
5 0 0 23 1 - - - -
6 0 0 0 0 - - - -
7 0 22 11 11 - - - -
8 0 22 10 12 - - - -