C4graphConstructions for C4[ 192, 25 ] = PL(MSY(4,24,11,12))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 192, 25 ]. See Glossary for some detail.

PL(MSY( 4, 24, 11, 12)) = PL(MSY( 4, 24, 13, 12)) = PL(MSY( 12, 8, 3, 4))

      = PL(MSY( 12, 8, 5, 4)) = PL(MC3( 4, 24, 1, 19, 7, 4, 1), [8^12, 24^4]) = PL(MC3( 4, 24, 1, 19, 13, 4, 1), [8^12, 24^4])

      = PL(MC3( 4, 24, 1, 11, 13, 12, 1), [8^12, 24^4]) = PL(MC3( 12, 8, 1, 3, 5, 4, 1), [8^12, 24^4]) = PL(KE_ 24( 1, 13, 2, 1, 11), [8^12, 24^4])

      = PL(Curtain_ 24( 1, 11, 12, 13, 23), [8^12, 24^4]) = PL(MBr( 12, 8; 3)) = PL(MBr( 4, 24; 11))

      = SS[192, 44]

Cyclic coverings

mod 24:
12345678
1 - - - - 0 1 0 23 - -
2 - - - - 14 0 0 0
3 - - - - 12 0 0 22
4 - - - - - - 0 11 10 23
5 0 23 10 12 - - - - -
6 0 1 0 0 - - - - -
7 - 0 0 0 13 - - - -
8 - 0 2 1 14 - - - -

mod 24:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 11 0 11 -
3 - - - - - - 0 1 0 23
4 - - - - 0 11 - - 11 22
5 0 23 - - 0 13 - - - -
6 0 23 0 13 - - - - - -
7 - 0 13 0 23 - - - - -
8 - - 0 1 2 13 - - - -

mod 24:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 14 14
3 - - - - 1 0 13 2
4 - - - - 11 0 13 12
5 0 0 23 13 - - - -
6 0 0 0 0 - - - -
7 0 10 11 11 - - - -
8 0 10 22 12 - - - -

mod 24:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 11 0 - 10
3 - - - - - 0 0 11 22
4 - - - - - 0 0 1 12
5 0 23 0 13 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 13 0 23 - - - -
8 0 14 2 12 - - - -

mod 24:
12345678
1 - - - - 0 9 0 21 - -
2 - - - - 0 9 - - 0 3
3 - - - - - - 0 15 0 3
4 - - - - - 1 4 0 15 -
5 0 15 0 15 - - - - - -
6 0 3 - - 20 23 - - - -
7 - - 0 9 0 9 - - - -
8 - 0 21 0 21 - - - - -

mod 24:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 1 19
3 - - - - 13 7 1 19
4 - - - - 13 7 20 20
5 0 0 11 11 - - - -
6 0 0 17 17 - - - -
7 0 23 23 4 - - - -
8 0 5 5 4 - - - -