[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 192, 25 ]. See Glossary for some
detail.
PL(MSY( 4, 24, 11, 12)) = PL(MSY( 4, 24, 13, 12)) = PL(MSY( 12, 8, 3,
4))
= PL(MSY( 12, 8, 5, 4)) = PL(MC3( 4, 24, 1, 19, 7, 4, 1), [8^12, 24^4])
= PL(MC3( 4, 24, 1, 19, 13, 4, 1), [8^12, 24^4])
= PL(MC3( 4, 24, 1, 11, 13, 12, 1), [8^12, 24^4]) = PL(MC3( 12, 8, 1, 3,
5, 4, 1), [8^12, 24^4]) = PL(KE_ 24( 1, 13, 2, 1, 11), [8^12, 24^4])
= PL(Curtain_ 24( 1, 11, 12, 13, 23), [8^12, 24^4]) = PL(MBr( 12, 8; 3)) =
PL(MBr( 4, 24; 11))
= SS[192, 44]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 23 | - | - |
2 | - | - | - | - | 14 | 0 | 0 | 0 |
3 | - | - | - | - | 12 | 0 | 0 | 22 |
4 | - | - | - | - | - | - | 0 11 | 10 23 |
5 | 0 23 | 10 | 12 | - | - | - | - | - |
6 | 0 1 | 0 | 0 | - | - | - | - | - |
7 | - | 0 | 0 | 0 13 | - | - | - | - |
8 | - | 0 | 2 | 1 14 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 1 | - | - |
2 | - | - | - | - | - | 0 11 | 0 11 | - |
3 | - | - | - | - | - | - | 0 1 | 0 23 |
4 | - | - | - | - | 0 11 | - | - | 11 22 |
5 | 0 23 | - | - | 0 13 | - | - | - | - |
6 | 0 23 | 0 13 | - | - | - | - | - | - |
7 | - | 0 13 | 0 23 | - | - | - | - | - |
8 | - | - | 0 1 | 2 13 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 0 | 14 | 14 |
3 | - | - | - | - | 1 | 0 | 13 | 2 |
4 | - | - | - | - | 11 | 0 | 13 | 12 |
5 | 0 | 0 | 23 | 13 | - | - | - | - |
6 | 0 | 0 | 0 | 0 | - | - | - | - |
7 | 0 | 10 | 11 | 11 | - | - | - | - |
8 | 0 | 10 | 22 | 12 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 | - | 0 |
2 | - | - | - | - | 0 11 | 0 | - | 10 |
3 | - | - | - | - | - | 0 | 0 11 | 22 |
4 | - | - | - | - | - | 0 | 0 1 | 12 |
5 | 0 23 | 0 13 | - | - | - | - | - | - |
6 | 0 | 0 | 0 | 0 | - | - | - | - |
7 | - | - | 0 13 | 0 23 | - | - | - | - |
8 | 0 | 14 | 2 | 12 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 9 | 0 21 | - | - |
2 | - | - | - | - | 0 9 | - | - | 0 3 |
3 | - | - | - | - | - | - | 0 15 | 0 3 |
4 | - | - | - | - | - | 1 4 | 0 15 | - |
5 | 0 15 | 0 15 | - | - | - | - | - | - |
6 | 0 3 | - | - | 20 23 | - | - | - | - |
7 | - | - | 0 9 | 0 9 | - | - | - | - |
8 | - | 0 21 | 0 21 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 0 | 1 | 19 |
3 | - | - | - | - | 13 | 7 | 1 | 19 |
4 | - | - | - | - | 13 | 7 | 20 | 20 |
5 | 0 | 0 | 11 | 11 | - | - | - | - |
6 | 0 | 0 | 17 | 17 | - | - | - | - |
7 | 0 | 23 | 23 | 4 | - | - | - | - |
8 | 0 | 5 | 5 | 4 | - | - | - | - |