C4graphGraph forms for C4 [ 192, 28 ] = PL(MSY(4,24,17,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 28 ] = PL(MSY(4,24,17,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {76, 108}, {77, 109}, {76, 109}, {74, 104}, {75, 105}, {75, 104}, {76, 105}, {75, 108}, {71, 111}, {73, 97}, {70, 111}, {80, 121}, {64, 107}, {74, 97}, {64, 108}, {80, 124}, {81, 125}, {73, 100}, {80, 125}, {74, 100}, {75, 101}, {74, 101}, {79, 124}, {70, 112}, {78, 120}, {79, 121}, {71, 112}, {79, 120}, {67, 123}, {68, 124}, {77, 116}, {78, 116}, {79, 117}, {78, 117}, {76, 112}, {77, 113}, {77, 112}, {67, 124}, {68, 123}, {78, 113}, {53, 116}, {54, 116}, {60, 120}, {54, 115}, {61, 120}, {53, 115}, {61, 119}, {60, 119}, {51, 127}, {50, 127}, {56, 104}, {50, 99}, {57, 104}, {49, 99}, {63, 108}, {63, 107}, {49, 100}, {50, 100}, {32, 122}, {32, 123}, {32, 126}, {33, 127}, {57, 103}, {32, 127}, {33, 126}, {56, 103}, {1, 97}, {2, 98}, {1, 98}, {2, 97}, {31, 123}, {15, 106}, {31, 122}, {15, 105}, {30, 118}, {31, 119}, {19, 122}, {31, 118}, {30, 119}, {19, 121}, {9, 101}, {30, 114}, {8, 101}, {30, 115}, {20, 121}, {8, 102}, {29, 115}, {20, 122}, {9, 102}, {29, 114}, {27, 107}, {27, 106}, {28, 110}, {29, 111}, {28, 111}, {29, 110}, {5, 113}, {6, 114}, {28, 106}, {5, 114}, {28, 107}, {6, 113}, {13, 117}, {26, 98}, {22, 110}, {12, 117}, {26, 99}, {23, 110}, {16, 105}, {12, 118}, {25, 99}, {23, 109}, {16, 106}, {13, 118}, {25, 98}, {22, 109}, {2, 126}, {27, 103}, {26, 102}, {3, 126}, {27, 102}, {26, 103}, {3, 125}, {2, 125}, {21, 149}, {43, 171}, {59, 187}, {60, 188}, {20, 149}, {43, 170}, {20, 150}, {45, 175}, {44, 174}, {53, 183}, {66, 192}, {21, 150}, {45, 174}, {44, 175}, {52, 183}, {67, 192}, {44, 170}, {44, 171}, {59, 188}, {60, 187}, {6, 142}, {42, 162}, {10, 130}, {9, 129}, {7, 142}, {42, 163}, {73, 192}, {7, 141}, {41, 163}, {48, 186}, {6, 141}, {41, 162}, {10, 129}, {9, 130}, {48, 187}, {42, 166}, {43, 167}, {52, 184}, {42, 167}, {43, 166}, {53, 184}, {48, 190}, {62, 176}, {48, 191}, {63, 176}, {63, 175}, {24, 137}, {62, 175}, {24, 138}, {56, 171}, {10, 158}, {17, 133}, {47, 187}, {56, 172}, {11, 158}, {16, 133}, {47, 186}, {11, 157}, {16, 134}, {49, 167}, {10, 157}, {17, 134}, {46, 182}, {47, 183}, {3, 154}, {46, 183}, {47, 182}, {49, 168}, {3, 153}, {58, 160}, {55, 172}, {59, 160}, {13, 145}, {14, 146}, {46, 178}, {55, 171}, {4, 153}, {23, 138}, {46, 179}, {4, 154}, {45, 179}, {23, 137}, {13, 146}, {45, 178}, {14, 145}, {14, 174}, {96, 192}, {34, 130}, {8, 169}, {34, 131}, {15, 174}, {8, 170}, {33, 131}, {15, 173}, {14, 173}, {33, 130}, {1, 165}, {35, 135}, {34, 134}, {22, 178}, {21, 177}, {59, 159}, {34, 135}, {35, 134}, {58, 159}, {25, 191}, {54, 144}, {1, 166}, {25, 190}, {22, 177}, {21, 178}, {55, 144}, {35, 139}, {51, 155}, {52, 156}, {35, 138}, {61, 148}, {36, 142}, {37, 143}, {62, 148}, {36, 143}, {37, 142}, {18, 190}, {7, 170}, {19, 190}, {62, 147}, {7, 169}, {36, 138}, {19, 189}, {61, 147}, {18, 189}, {36, 139}, {51, 156}, {52, 155}, {5, 181}, {39, 151}, {38, 150}, {18, 162}, {17, 161}, {4, 181}, {39, 150}, {38, 151}, {11, 186}, {4, 182}, {40, 154}, {11, 185}, {50, 128}, {5, 182}, {40, 155}, {18, 161}, {17, 162}, {51, 128}, {38, 146}, {12, 185}, {38, 147}, {12, 186}, {41, 159}, {40, 158}, {37, 147}, {37, 146}, {41, 158}, {40, 159}, {55, 143}, {54, 143}, {58, 131}, {57, 131}, {39, 155}, {24, 165}, {39, 154}, {57, 132}, {24, 166}, {58, 132}, {85, 148}, {88, 153}, {86, 148}, {87, 149}, {72, 139}, {86, 149}, {72, 140}, {89, 157}, {88, 156}, {84, 144}, {85, 145}, {85, 144}, {88, 157}, {65, 135}, {64, 135}, {86, 145}, {64, 136}, {65, 136}, {71, 140}, {87, 156}, {71, 139}, {86, 152}, {87, 153}, {87, 152}, {80, 128}, {81, 129}, {81, 128}, {69, 151}, {68, 151}, {82, 129}, {81, 132}, {82, 132}, {83, 133}, {82, 133}, {84, 140}, {85, 141}, {84, 141}, {96, 185}, {82, 136}, {83, 137}, {83, 136}, {68, 152}, {96, 188}, {69, 152}, {96, 189}, {84, 137}, {83, 140}, {72, 168}, {66, 163}, {65, 163}, {95, 188}, {65, 164}, {66, 164}, {95, 185}, {94, 184}, {95, 184}, {93, 180}, {94, 180}, {95, 181}, {94, 181}, {92, 176}, {93, 177}, {93, 176}, {72, 167}, {94, 177}, {92, 172}, {93, 173}, {69, 180}, {92, 173}, {70, 180}, {91, 169}, {90, 168}, {91, 168}, {73, 189}, {70, 179}, {92, 169}, {69, 179}, {91, 172}, {88, 160}, {89, 161}, {89, 160}, {90, 161}, {67, 191}, {66, 191}, {89, 164}, {90, 164}, {91, 165}, {90, 165} }>;

(II) A more general form is to represent the graph as the orbit of {76, 108} under the group generated by the following permutations:

a: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 43)(26, 42)(27, 41)(28, 40)(29, 39)(30, 38)(31, 37)(32, 36)(33, 35)(44, 48)(45, 47)(50, 72)(51, 71)(52, 70)(53, 69)(54, 68)(55, 67)(56, 66)(57, 65)(58, 64)(59, 63)(60, 62)(73, 91)(74, 90)(75, 89)(76, 88)(77, 87)(78, 86)(79, 85)(80, 84)(81, 83)(92, 96)(93, 95)(97, 165)(98, 166)(99, 167)(100, 168)(101, 161)(102, 162)(103, 163)(104, 164)(105, 157)(106, 158)(107, 159)(108, 160)(109, 153)(110, 154)(111, 155)(112, 156)(113, 149)(114, 150)(115, 151)(116, 152)(117, 145)(118, 146)(119, 147)(120, 148)(121, 141)(122, 142)(123, 143)(124, 144)(125, 137)(126, 138)(127, 139)(128, 140)(129, 133)(130, 134)(131, 135)(132, 136)(169, 189)(170, 190)(171, 191)(172, 192)(173, 185)(174, 186)(175, 187)(176, 188)(177, 181)(178, 182)(179, 183)(180, 184)
b: (25, 73)(26, 74)(27, 75)(28, 76)(29, 77)(30, 78)(31, 79)(32, 80)(33, 81)(34, 82)(35, 83)(36, 84)(37, 85)(38, 86)(39, 87)(40, 88)(41, 89)(42, 90)(43, 91)(44, 92)(45, 93)(46, 94)(47, 95)(48, 96)(97, 98)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114)(115, 116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)
c: (1, 25)(2, 26)(3, 27)(4, 28)(5, 29)(6, 30)(7, 31)(8, 32)(9, 33)(10, 34)(11, 35)(12, 36)(13, 37)(14, 38)(15, 39)(16, 40)(17, 41)(18, 42)(19, 43)(20, 44)(21, 45)(22, 46)(23, 47)(24, 48)(49, 73)(50, 74)(51, 75)(52, 76)(53, 77)(54, 78)(55, 79)(56, 80)(57, 81)(58, 82)(59, 83)(60, 84)(61, 85)(62, 86)(63, 87)(64, 88)(65, 89)(66, 90)(67, 91)(68, 92)(69, 93)(70, 94)(71, 95)(72, 96)(97, 99)(101, 127)(102, 126)(103, 125)(104, 128)(105, 155)(106, 154)(107, 153)(108, 156)(109, 183)(110, 182)(111, 181)(112, 184)(113, 115)(117, 143)(118, 142)(119, 141)(120, 144)(121, 171)(122, 170)(123, 169)(124, 172)(129, 131)(133, 159)(134, 158)(135, 157)(136, 160)(137, 187)(138, 186)(139, 185)(140, 188)(145, 147)(149, 175)(150, 174)(151, 173)(152, 176)(161, 163)(165, 191)(166, 190)(167, 189)(168, 192)(177, 179)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 32, 39, 46, 29, 36, 43, 26, 33, 40, 47, 30, 37, 44, 27, 34, 41, 48, 31, 38, 45, 28, 35, 42)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 80, 87, 94, 77, 84, 91, 74, 81, 88, 95, 78, 85, 92, 75, 82, 89, 96, 79, 86, 93, 76, 83, 90)(97, 125, 153, 181, 113, 141, 169, 101, 129, 157, 185, 117, 145, 173, 105, 133, 161, 189, 121, 149, 177, 109, 137, 165)(98, 126, 154, 182, 114, 142, 170, 102, 130, 158, 186, 118, 146, 174, 106, 134, 162, 190, 122, 150, 178, 110, 138, 166)(99, 127, 155, 183, 115, 143, 171, 103, 131, 159, 187, 119, 147, 175, 107, 135, 163, 191, 123, 151, 179, 111, 139, 167)(100, 128, 156, 184, 116, 144, 172, 104, 132, 160, 188, 120, 148, 176, 108, 136, 164, 192, 124, 152, 180, 112, 140, 168)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 28 ]
192
-1 165 166 97 98
-2 125 126 97 98
-3 154 125 126 153
-4 154 181 182 153
-5 113 114 181 182
-6 113 114 141 142
-7 169 170 141 142
-8 101 102 169 170
-9 101 102 129 130
-10 157 158 129 130
-11 157 158 185 186
-12 117 118 185 186
-13 145 146 117 118
-14 145 146 173 174
-15 105 106 173 174
-16 133 134 105 106
-17 133 134 161 162
-18 189 190 161 162
-19 121 122 189 190
-20 121 122 149 150
-21 177 178 149 150
-22 110 177 178 109
-23 110 137 138 109
-24 165 166 137 138
-25 99 190 191 98
-26 99 102 103 98
-27 102 103 106 107
-28 110 111 106 107
-29 110 111 114 115
-30 114 115 118 119
-31 122 123 118 119
-32 122 123 126 127
-33 126 127 130 131
-34 134 135 130 131
-35 134 135 138 139
-36 143 138 139 142
-37 143 146 147 142
-38 146 147 150 151
-39 154 155 150 151
-40 154 155 158 159
-41 158 159 162 163
-42 166 167 162 163
-43 166 167 170 171
-44 170 171 174 175
-45 178 179 174 175
-46 178 179 182 183
-47 187 182 183 186
-48 187 190 191 186
-49 99 100 167 168
-50 99 100 127 128
-51 155 156 127 128
-52 155 156 183 184
-53 115 116 183 184
-54 143 144 115 116
-55 143 144 171 172
-56 103 104 171 172
-57 132 103 104 131
-58 132 159 160 131
-59 187 188 159 160
-60 187 188 119 120
-61 147 148 119 120
-62 176 147 148 175
-63 176 107 108 175
-64 135 136 107 108
-65 135 136 163 164
-66 191 192 163 164
-67 123 124 191 192
-68 123 124 151 152
-69 179 180 151 152
-70 111 112 179 180
-71 111 112 139 140
-72 167 168 139 140
-73 100 189 192 97
-74 100 101 104 97
-75 101 104 105 108
-76 112 105 108 109
-77 112 113 116 109
-78 113 116 117 120
-79 121 124 117 120
-80 121 124 125 128
-81 132 125 128 129
-82 132 133 136 129
-83 133 136 137 140
-84 144 137 140 141
-85 144 145 148 141
-86 145 148 149 152
-87 156 149 152 153
-88 156 157 160 153
-89 157 160 161 164
-90 165 168 161 164
-91 165 168 169 172
-92 176 169 172 173
-93 176 177 180 173
-94 177 180 181 184
-95 188 181 184 185
-96 188 189 192 185
-97 1 2 73 74
-98 1 2 25 26
-99 25 26 49 50
-100 49 50 73 74
-101 8 74 9 75
-102 26 27 8 9
-103 56 57 26 27
-104 56 57 74 75
-105 15 16 75 76
-106 15 16 27 28
-107 27 28 63 64
-108 63 64 75 76
-109 22 77 23 76
-110 22 23 28 29
-111 70 71 28 29
-112 77 70 71 76
-113 77 78 5 6
-114 5 6 29 30
-115 29 30 53 54
-116 77 78 53 54
-117 12 78 13 79
-118 12 13 30 31
-119 60 61 30 31
-120 78 79 60 61
-121 79 80 19 20
-122 19 20 31 32
-123 67 68 31 32
-124 67 68 79 80
-125 2 3 80 81
-126 33 2 3 32
-127 33 50 51 32
-128 80 81 50 51
-129 81 82 9 10
-130 33 34 9 10
-131 33 34 57 58
-132 57 58 81 82
-133 16 82 17 83
-134 34 35 16 17
-135 34 35 64 65
-136 82 83 64 65
-137 23 24 83 84
-138 23 24 35 36
-139 35 36 71 72
-140 71 72 83 84
-141 6 7 84 85
-142 36 37 6 7
-143 55 36 37 54
-144 55 84 85 54
-145 13 14 85 86
-146 13 14 37 38
-147 37 38 61 62
-148 61 62 85 86
-149 20 86 21 87
-150 38 39 20 21
-151 68 69 38 39
-152 68 69 86 87
-153 88 3 4 87
-154 3 4 39 40
-155 39 40 51 52
-156 88 51 52 87
-157 11 88 89 10
-158 11 40 41 10
-159 58 59 40 41
-160 88 89 58 59
-161 89 90 17 18
-162 17 18 41 42
-163 66 41 42 65
-164 66 89 90 65
-165 1 24 90 91
-166 1 24 42 43
-167 49 72 42 43
-168 90 91 49 72
-169 91 92 7 8
-170 44 7 8 43
-171 44 55 56 43
-172 55 56 91 92
-173 14 15 92 93
-174 44 45 14 15
-175 44 45 62 63
-176 92 93 62 63
-177 22 93 94 21
-178 22 45 46 21
-179 45 46 69 70
-180 69 70 93 94
-181 4 5 94 95
-182 46 47 4 5
-183 46 47 52 53
-184 94 95 52 53
-185 11 12 95 96
-186 11 12 47 48
-187 47 48 59 60
-188 59 60 95 96
-189 18 73 19 96
-190 25 48 18 19
-191 66 67 25 48
-192 66 67 73 96
0

**************