C4graphGraph forms for C4 [ 192, 33 ] = PL(MSY(12,8,3,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 33 ] = PL(MSY(12,8,3,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {74, 106}, {74, 107}, {73, 107}, {91, 121}, {90, 120}, {85, 119}, {73, 106}, {91, 120}, {84, 119}, {92, 121}, {65, 105}, {66, 106}, {65, 106}, {66, 105}, {84, 120}, {85, 120}, {69, 117}, {68, 117}, {68, 118}, {69, 118}, {89, 108}, {90, 108}, {91, 109}, {90, 109}, {89, 97}, {82, 107}, {81, 107}, {90, 97}, {74, 118}, {75, 119}, {74, 119}, {75, 118}, {81, 108}, {82, 108}, {52, 116}, {53, 116}, {33, 101}, {34, 102}, {53, 115}, {33, 102}, {34, 101}, {52, 115}, {56, 127}, {55, 127}, {42, 102}, {42, 103}, {41, 103}, {58, 116}, {59, 117}, {41, 102}, {58, 117}, {59, 116}, {57, 105}, {57, 104}, {44, 126}, {58, 104}, {44, 127}, {58, 105}, {37, 113}, {43, 127}, {36, 113}, {43, 126}, {40, 125}, {50, 103}, {36, 114}, {40, 126}, {49, 103}, {37, 114}, {42, 114}, {43, 115}, {39, 126}, {43, 114}, {42, 115}, {49, 104}, {39, 125}, {50, 104}, {1, 97}, {28, 124}, {2, 98}, {28, 125}, {1, 98}, {24, 123}, {2, 97}, {10, 110}, {24, 124}, {20, 112}, {11, 111}, {10, 111}, {21, 112}, {11, 110}, {27, 125}, {27, 124}, {5, 109}, {10, 98}, {4, 109}, {10, 99}, {4, 110}, {27, 113}, {26, 112}, {9, 99}, {5, 110}, {27, 112}, {26, 113}, {23, 124}, {9, 98}, {23, 123}, {11, 123}, {8, 121}, {18, 99}, {11, 122}, {8, 122}, {17, 99}, {17, 100}, {12, 122}, {18, 100}, {12, 123}, {21, 111}, {20, 111}, {25, 101}, {7, 122}, {25, 100}, {7, 121}, {26, 100}, {26, 101}, {33, 161}, {47, 175}, {21, 148}, {47, 174}, {22, 148}, {33, 162}, {51, 176}, {2, 134}, {52, 176}, {57, 189}, {3, 134}, {22, 147}, {57, 188}, {3, 133}, {21, 147}, {2, 133}, {24, 159}, {29, 149}, {29, 148}, {40, 161}, {36, 173}, {12, 134}, {48, 186}, {40, 162}, {36, 174}, {30, 148}, {13, 135}, {54, 188}, {12, 135}, {30, 149}, {13, 134}, {48, 187}, {55, 188}, {32, 172}, {47, 163}, {46, 162}, {55, 187}, {32, 173}, {47, 162}, {46, 163}, {35, 174}, {54, 187}, {17, 159}, {35, 173}, {63, 177}, {63, 176}, {14, 158}, {15, 159}, {14, 159}, {15, 158}, {41, 187}, {49, 163}, {41, 186}, {5, 145}, {29, 137}, {28, 136}, {19, 135}, {6, 146}, {8, 157}, {29, 136}, {28, 137}, {18, 135}, {49, 164}, {8, 158}, {86, 192}, {5, 146}, {87, 192}, {6, 145}, {32, 184}, {32, 185}, {89, 192}, {18, 136}, {62, 164}, {63, 165}, {19, 136}, {52, 175}, {56, 163}, {62, 165}, {63, 164}, {1, 157}, {38, 186}, {14, 146}, {51, 175}, {56, 164}, {14, 147}, {39, 186}, {13, 147}, {48, 174}, {39, 185}, {1, 158}, {48, 175}, {38, 185}, {13, 146}, {23, 183}, {96, 192}, {25, 185}, {22, 183}, {25, 184}, {54, 151}, {53, 151}, {15, 171}, {61, 153}, {15, 170}, {61, 152}, {16, 182}, {45, 139}, {44, 138}, {62, 152}, {16, 183}, {45, 138}, {44, 139}, {62, 153}, {34, 138}, {3, 170}, {35, 138}, {3, 169}, {35, 137}, {34, 137}, {4, 169}, {53, 152}, {4, 170}, {22, 184}, {54, 152}, {23, 184}, {6, 182}, {38, 150}, {37, 149}, {60, 140}, {61, 141}, {7, 182}, {17, 160}, {60, 141}, {61, 140}, {7, 181}, {31, 173}, {6, 181}, {38, 149}, {37, 150}, {31, 172}, {55, 128}, {19, 171}, {46, 150}, {24, 160}, {20, 172}, {51, 139}, {56, 128}, {46, 151}, {50, 139}, {16, 170}, {45, 151}, {59, 129}, {16, 171}, {45, 150}, {59, 128}, {60, 128}, {60, 129}, {9, 183}, {31, 161}, {30, 160}, {50, 140}, {9, 182}, {31, 160}, {30, 161}, {20, 171}, {19, 172}, {51, 140}, {93, 156}, {76, 142}, {95, 157}, {94, 156}, {77, 143}, {82, 144}, {76, 143}, {94, 157}, {77, 142}, {83, 144}, {71, 130}, {71, 129}, {75, 131}, {72, 129}, {96, 169}, {85, 156}, {75, 130}, {72, 130}, {86, 156}, {66, 142}, {93, 145}, {92, 144}, {67, 142}, {93, 144}, {86, 155}, {67, 141}, {85, 155}, {76, 130}, {66, 141}, {94, 145}, {76, 131}, {87, 132}, {78, 154}, {96, 180}, {87, 131}, {78, 155}, {96, 181}, {77, 155}, {77, 154}, {92, 132}, {93, 133}, {92, 133}, {88, 131}, {69, 153}, {88, 132}, {70, 154}, {83, 143}, {82, 143}, {69, 154}, {91, 132}, {70, 153}, {83, 179}, {84, 180}, {80, 178}, {80, 179}, {65, 165}, {65, 166}, {83, 180}, {84, 179}, {78, 166}, {87, 191}, {79, 167}, {78, 167}, {86, 191}, {79, 166}, {95, 180}, {89, 181}, {72, 165}, {72, 166}, {80, 190}, {80, 191}, {64, 176}, {88, 168}, {64, 177}, {67, 178}, {67, 177}, {68, 177}, {68, 178}, {95, 169}, {94, 168}, {73, 191}, {81, 167}, {73, 190}, {95, 168}, {70, 190}, {71, 190}, {81, 168}, {71, 189}, {70, 189}, {64, 188}, {79, 179}, {64, 189}, {79, 178}, {88, 167} }>;

(II) A more general form is to represent the graph as the orbit of {74, 106} under the group generated by the following permutations:

a: (9, 89)(10, 90)(11, 91)(12, 92)(13, 93)(14, 94)(15, 95)(16, 96)(17, 81)(18, 82)(19, 83)(20, 84)(21, 85)(22, 86)(23, 87)(24, 88)(25, 73)(26, 74)(27, 75)(28, 76)(29, 77)(30, 78)(31, 79)(32, 80)(33, 65)(34, 66)(35, 67)(36, 68)(37, 69)(38, 70)(39, 71)(40, 72)(41, 57)(42, 58)(43, 59)(44, 60)(45, 61)(46, 62)(47, 63)(48, 64)(97, 98)(99, 108)(100, 107)(101, 106)(102, 105)(103, 104)(109, 110)(111, 120)(112, 119)(113, 118)(114, 117)(115, 116)(121, 122)(123, 132)(124, 131)(125, 130)(126, 129)(127, 128)(133, 134)(135, 144)(136, 143)(137, 142)(138, 141)(139, 140)(145, 146)(147, 156)(148, 155)(149, 154)(150, 153)(151, 152)(157, 158)(159, 168)(160, 167)(161, 166)(162, 165)(163, 164)(169, 170)(171, 180)(172, 179)(173, 178)(174, 177)(175, 176)(181, 182)(183, 192)(184, 191)(185, 190)(186, 189)(187, 188)
b: (1, 2, 3, 4, 5, 6, 7, 8)(9, 12, 15, 10, 13, 16, 11, 14)(17, 18, 19, 20, 21, 22, 23, 24)(25, 28, 31, 26, 29, 32, 27, 30)(33, 34, 35, 36, 37, 38, 39, 40)(41, 44, 47, 42, 45, 48, 43, 46)(49, 50, 51, 52, 53, 54, 55, 56)(57, 60, 63, 58, 61, 64, 59, 62)(65, 66, 67, 68, 69, 70, 71, 72)(73, 76, 79, 74, 77, 80, 75, 78)(81, 82, 83, 84, 85, 86, 87, 88)(89, 92, 95, 90, 93, 96, 91, 94)(97, 133, 169, 109, 145, 181, 121, 157)(98, 134, 170, 110, 146, 182, 122, 158)(99, 135, 171, 111, 147, 183, 123, 159)(100, 136, 172, 112, 148, 184, 124, 160)(101, 137, 173, 113, 149, 185, 125, 161)(102, 138, 174, 114, 150, 186, 126, 162)(103, 139, 175, 115, 151, 187, 127, 163)(104, 140, 176, 116, 152, 188, 128, 164)(105, 141, 177, 117, 153, 189, 129, 165)(106, 142, 178, 118, 154, 190, 130, 166)(107, 143, 179, 119, 155, 191, 131, 167)(108, 144, 180, 120, 156, 192, 132, 168)
c: (2, 8)(3, 7)(4, 6)(9, 15)(10, 14)(11, 13)(18, 24)(19, 23)(20, 22)(25, 31)(26, 30)(27, 29)(34, 40)(35, 39)(36, 38)(41, 47)(42, 46)(43, 45)(50, 56)(51, 55)(52, 54)(57, 63)(58, 62)(59, 61)(66, 72)(67, 71)(68, 70)(73, 79)(74, 78)(75, 77)(82, 88)(83, 87)(84, 86)(89, 95)(90, 94)(91, 93)(97, 157)(98, 158)(99, 159)(100, 160)(101, 161)(102, 162)(103, 163)(104, 164)(105, 165)(106, 166)(107, 167)(108, 168)(109, 145)(110, 146)(111, 147)(112, 148)(113, 149)(114, 150)(115, 151)(116, 152)(117, 153)(118, 154)(119, 155)(120, 156)(121, 133)(122, 134)(123, 135)(124, 136)(125, 137)(126, 138)(127, 139)(128, 140)(129, 141)(130, 142)(131, 143)(132, 144)(169, 181)(170, 182)(171, 183)(172, 184)(173, 185)(174, 186)(175, 187)(176, 188)(177, 189)(178, 190)(179, 191)(180, 192)
d: (1, 9, 23, 27, 37, 45, 51, 63, 65, 73, 87, 91, 5, 13, 19, 31, 33, 41, 55, 59, 69, 77, 83, 95)(2, 16, 24, 26, 38, 44, 52, 62, 66, 80, 88, 90, 6, 12, 20, 30, 34, 48, 56, 58, 70, 76, 84, 94)(3, 15, 17, 25, 39, 43, 53, 61, 67, 79, 81, 89, 7, 11, 21, 29, 35, 47, 49, 57, 71, 75, 85, 93)(4, 14, 18, 32, 40, 42, 54, 60, 68, 78, 82, 96, 8, 10, 22, 28, 36, 46, 50, 64, 72, 74, 86, 92)(97, 182, 123, 112, 149, 138, 175, 164, 105, 190, 131, 120, 145, 134, 171, 160, 101, 186, 127, 116, 153, 142, 179, 168)(98, 183, 124, 113, 150, 139, 176, 165, 106, 191, 132, 109, 146, 135, 172, 161, 102, 187, 128, 117, 154, 143, 180, 157)(99, 184, 125, 114, 151, 140, 177, 166, 107, 192, 121, 110, 147, 136, 173, 162, 103, 188, 129, 118, 155, 144, 169, 158)(100, 185, 126, 115, 152, 141, 178, 167, 108, 181, 122, 111, 148, 137, 174, 163, 104, 189, 130, 119, 156, 133, 170, 159)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 33 ]
192
-1 157 158 97 98
-2 133 134 97 98
-3 133 134 169 170
-4 110 169 170 109
-5 110 145 146 109
-6 145 146 181 182
-7 121 122 181 182
-8 121 122 157 158
-9 99 182 183 98
-10 99 110 111 98
-11 110 111 122 123
-12 122 123 134 135
-13 134 135 146 147
-14 146 147 158 159
-15 158 159 170 171
-16 170 171 182 183
-17 99 100 159 160
-18 99 100 135 136
-19 135 136 171 172
-20 111 112 171 172
-21 111 112 147 148
-22 147 148 183 184
-23 123 124 183 184
-24 123 124 159 160
-25 100 101 184 185
-26 100 101 112 113
-27 112 113 124 125
-28 124 125 136 137
-29 136 137 148 149
-30 148 149 160 161
-31 160 161 172 173
-32 172 173 184 185
-33 101 102 161 162
-34 101 102 137 138
-35 137 138 173 174
-36 113 114 173 174
-37 113 114 149 150
-38 149 150 185 186
-39 125 126 185 186
-40 125 126 161 162
-41 187 102 103 186
-42 102 103 114 115
-43 114 115 126 127
-44 126 127 138 139
-45 138 139 150 151
-46 150 151 162 163
-47 162 163 174 175
-48 187 174 175 186
-49 103 104 163 164
-50 103 104 139 140
-51 176 139 140 175
-52 176 115 116 175
-53 115 116 151 152
-54 187 188 151 152
-55 187 188 127 128
-56 127 128 163 164
-57 188 189 104 105
-58 104 105 116 117
-59 116 117 128 129
-60 128 129 140 141
-61 140 141 152 153
-62 165 152 153 164
-63 165 176 177 164
-64 176 177 188 189
-65 165 166 105 106
-66 105 106 141 142
-67 177 178 141 142
-68 177 178 117 118
-69 154 117 118 153
-70 154 189 190 153
-71 189 190 129 130
-72 165 166 129 130
-73 190 191 106 107
-74 106 107 118 119
-75 118 119 130 131
-76 143 130 131 142
-77 143 154 155 142
-78 154 155 166 167
-79 166 167 178 179
-80 178 179 190 191
-81 167 168 107 108
-82 143 144 107 108
-83 143 144 179 180
-84 179 180 119 120
-85 155 156 119 120
-86 155 156 191 192
-87 132 191 192 131
-88 132 167 168 131
-89 181 192 97 108
-90 97 108 109 120
-91 121 132 109 120
-92 121 132 133 144
-93 133 144 145 156
-94 145 156 157 168
-95 157 168 169 180
-96 169 180 181 192
-97 1 89 2 90
-98 1 2 9 10
-99 17 18 9 10
-100 25 26 17 18
-101 33 34 25 26
-102 33 34 41 42
-103 49 50 41 42
-104 57 58 49 50
-105 66 57 58 65
-106 66 73 74 65
-107 81 82 73 74
-108 89 90 81 82
-109 90 91 4 5
-110 11 4 5 10
-111 11 20 10 21
-112 26 27 20 21
-113 36 26 37 27
-114 36 37 42 43
-115 52 42 53 43
-116 58 59 52 53
-117 68 58 69 59
-118 68 69 74 75
-119 84 74 85 75
-120 90 91 84 85
-121 91 92 7 8
-122 11 12 7 8
-123 11 12 23 24
-124 23 24 27 28
-125 27 28 39 40
-126 44 39 40 43
-127 44 55 56 43
-128 55 56 59 60
-129 59 60 71 72
-130 71 72 75 76
-131 88 75 76 87
-132 88 91 92 87
-133 2 3 92 93
-134 12 2 13 3
-135 12 13 18 19
-136 28 18 29 19
-137 34 35 28 29
-138 44 34 45 35
-139 44 45 50 51
-140 60 50 61 51
-141 66 67 60 61
-142 66 77 67 76
-143 77 82 83 76
-144 92 82 93 83
-145 5 93 6 94
-146 13 14 5 6
-147 22 13 14 21
-148 22 29 30 21
-149 37 38 29 30
-150 45 46 37 38
-151 45 46 53 54
-152 61 62 53 54
-153 69 70 61 62
-154 77 78 69 70
-155 77 78 85 86
-156 93 94 85 86
-157 1 94 95 8
-158 1 14 15 8
-159 24 14 15 17
-160 24 17 30 31
-161 33 40 30 31
-162 33 46 47 40
-163 56 46 47 49
-164 56 49 62 63
-165 72 62 63 65
-166 78 79 72 65
-167 88 78 79 81
-168 88 81 94 95
-169 3 4 95 96
-170 3 4 15 16
-171 15 16 19 20
-172 19 20 31 32
-173 35 36 31 32
-174 35 36 47 48
-175 47 48 51 52
-176 51 52 63 64
-177 67 68 63 64
-178 67 68 79 80
-179 79 80 83 84
-180 83 84 95 96
-181 89 6 7 96
-182 16 6 7 9
-183 22 23 16 9
-184 22 23 25 32
-185 25 38 39 32
-186 48 38 39 41
-187 55 48 41 54
-188 55 57 64 54
-189 57 70 71 64
-190 80 70 71 73
-191 80 73 86 87
-192 89 96 86 87
0

**************