[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 36 ] =
PL(MSZ(12,8,3,3),[4^24,12^8]).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {96, 105}, {96, 119}, {91, 123}, {76, 109}, {92, 125}, {86, 119},
{73, 107}, {94, 124}, {84, 118}, {72, 108}, {69, 99}, {77, 106}, {82, 117}, {93,
117}, {95, 118}, {78, 100}, {65, 106}, {80, 123}, {64, 110}, {79, 97}, {83,
124}, {83, 99}, {64, 115}, {71, 116}, {75, 120}, {78, 125}, {77, 121}, {80,
102}, {92, 106}, {85, 99}, {68, 115}, {94, 105}, {73, 126}, {67, 123}, {87,
111}, {85, 108}, {74, 112}, {89, 99}, {69, 126}, {90, 100}, {48, 112}, {53,
116}, {44, 110}, {40, 107}, {45, 104}, {33, 105}, {62, 118}, {37, 108}, {40,
97}, {57, 112}, {60, 118}, {35, 111}, {52, 120}, {43, 101}, {62, 112}, {32,
111}, {54, 121}, {63, 111}, {37, 116}, {38, 119}, {35, 113}, {56, 106}, {42,
121}, {44, 127}, {43, 126}, {50, 103}, {51, 102}, {58, 109}, {39, 127}, {61,
100}, {41, 115}, {59, 97}, {60, 102}, {54, 109}, {55, 107}, {46, 115}, {47,
114}, {57, 100}, {34, 124}, {47, 113}, {63, 97}, {33, 126}, {36, 123}, {2, 98},
{31, 127}, {5, 103}, {12, 110}, {6, 98}, {15, 107}, {20, 113}, {26, 124}, {21,
114}, {28, 116}, {19, 122}, {30, 119}, {8, 98}, {27, 113}, {22, 125}, {4, 104},
{5, 104}, {11, 101}, {17, 127}, {8, 120}, {29, 109}, {25, 105}, {3, 114}, {29,
108}, {23, 101}, {1, 114}, {9, 122}, {16, 101}, {17, 103}, {20, 98}, {10, 125},
{14, 121}, {13, 122}, {15, 117}, {18, 104}, {4, 120}, {7, 122}, {11, 117}, {16,
110}, {24, 103}, {25, 102}, {7, 135}, {9, 137}, {2, 131}, {35, 162}, {31, 158},
{27, 154}, {12, 141}, {11, 138}, {1, 131}, {42, 168}, {37, 167}, {9, 139}, {13,
142}, {28, 159}, {19, 144}, {3, 135}, {13, 137}, {15, 138}, {57, 188}, {20,
146}, {48, 183}, {17, 153}, {31, 151}, {53, 189}, {61, 181}, {18, 155}, {25,
144}, {54, 191}, {55, 190}, {59, 177}, {74, 192}, {44, 167}, {6, 138}, {39,
171}, {18, 159}, {41, 164}, {56, 181}, {59, 182}, {19, 157}, {49, 191}, {32,
174}, {31, 145}, {24, 150}, {22, 152}, {47, 160}, {21, 133}, {10, 155}, {37,
180}, {60, 173}, {81, 192}, {48, 162}, {63, 173}, {17, 130}, {30, 141}, {62,
173}, {1, 149}, {36, 176}, {23, 131}, {14, 155}, {26, 143}, {24, 141}, {19,
134}, {3, 149}, {43, 189}, {5, 147}, {58, 172}, {86, 192}, {4, 147}, {27, 140},
{23, 128}, {7, 144}, {52, 163}, {18, 138}, {6, 159}, {35, 186}, {33, 184}, {30,
135}, {55, 174}, {57, 160}, {60, 165}, {2, 152}, {40, 178}, {36, 190}, {32,
186}, {12, 150}, {8, 146}, {50, 168}, {53, 175}, {58, 161}, {5, 153}, {42, 182},
{26, 134}, {38, 187}, {51, 174}, {6, 152}, {34, 188}, {21, 139}, {62, 160}, {53,
170}, {61, 157}, {8, 169}, {38, 135}, {30, 191}, {28, 189}, {26, 187}, {22,
183}, {29, 191}, {23, 180}, {34, 134}, {56, 156}, {43, 142}, {56, 157}, {14,
168}, {51, 149}, {41, 142}, {61, 154}, {2, 170}, {48, 152}, {46, 134}, {10,
163}, {38, 143}, {13, 164}, {12, 166}, {47, 133}, {1, 170}, {32, 139}, {7, 172},
{9, 165}, {28, 176}, {58, 150}, {4, 169}, {41, 132}, {16, 189}, {34, 140}, {50,
156}, {44, 130}, {52, 154}, {63, 145}, {3, 172}, {39, 136}, {54, 153}, {21,
165}, {39, 151}, {24, 168}, {33, 144}, {49, 128}, {49, 131}, {10, 185}, {46,
157}, {45, 158}, {20, 160}, {22, 163}, {16, 166}, {45, 155}, {14, 185}, {25,
174}, {52, 140}, {27, 162}, {40, 145}, {59, 130}, {29, 167}, {46, 148}, {36,
159}, {45, 145}, {49, 141}, {55, 139}, {15, 178}, {50, 143}, {42, 151}, {11,
180}, {66, 130}, {90, 154}, {82, 146}, {85, 148}, {96, 161}, {66, 129}, {64,
132}, {75, 143}, {70, 129}, {73, 142}, {70, 140}, {88, 146}, {84, 158}, {68,
136}, {70, 136}, {93, 147}, {68, 148}, {69, 148}, {81, 128}, {86, 133}, {77,
153}, {81, 133}, {87, 129}, {75, 156}, {94, 137}, {83, 132}, {88, 128}, {89,
129}, {76, 150}, {79, 147}, {65, 156}, {89, 132}, {67, 158}, {72, 151}, {87,
136}, {74, 149}, {65, 161}, {80, 178}, {82, 176}, {71, 164}, {91, 184}, {76,
175}, {93, 185}, {82, 183}, {95, 186}, {84, 177}, {76, 170}, {83, 181}, {64,
167}, {92, 187}, {78, 169}, {74, 162}, {75, 163}, {90, 179}, {96, 137}, {91,
178}, {89, 179}, {94, 181}, {95, 179}, {65, 172}, {93, 176}, {72, 166}, {84,
186}, {68, 171}, {88, 183}, {66, 179}, {90, 171}, {67, 177}, {78, 188}, {51,
192}, {71, 180}, {85, 166}, {66, 182}, {95, 171}, {80, 165}, {92, 169}, {77,
187}, {79, 185}, {73, 190}, {88, 175}, {86, 161}, {70, 188}, {87, 173}, {67,
190}, {69, 184}, {72, 182}, {79, 177}, {81, 175}, {71, 184}, {91, 164} }>;
(II) A more general form is to represent the graph as the orbit of {96, 105}
under the group generated by the following permutations:
a: (11, 28)(12, 29)(15, 36)(16, 37)(23, 53)(24, 54)(26, 56)(27, 57)(30, 58)(32,
60)(34, 61)(35, 62)(38, 65)(40, 67)(43, 71)(49, 76)(50, 77)(52, 78)(55, 80)(63,
84)(70, 90)(73, 91)(75, 92)(87, 95)(97, 177)(100, 140)(101, 116)(102, 174)(103,
153)(106, 143)(107, 123)(108, 166)(109, 141)(110, 167)(111, 118)(112, 162)(113,
160)(117, 176)(119, 161)(120, 169)(121, 168)(124, 181)(125, 163)(126, 184)(128,
175)(129, 179)(131, 170)(134, 157)(135, 172)(136, 171)(138, 159)(139, 165)(142,
164)(145, 158)(150, 191)(154, 188)(156, 187)(173, 186)(178, 190)(180, 189) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3)(4, 26, 10, 56)(5, 34, 14, 61)(6, 7)(8, 38, 22, 65)(9, 11, 25, 28)(12,
62)(13, 15, 33, 36)(16, 60)(17, 70, 42, 90)(18, 19)(20, 30, 48, 58)(21, 23, 51,
53)(24, 57)(27, 54)(29, 35)(31, 68)(32, 37)(40, 69, 67, 41)(43, 80)(44, 87, 72,
95)(45, 46)(47, 49, 74, 76)(50, 78)(52, 77)(55, 71)(59, 89)(63, 85, 84, 64)(73,
91)(75, 92)(79, 83)(82, 96)(86, 88)(93, 94)(97, 99, 177, 132)(98, 135, 152,
172)(100, 103, 188, 168)(101, 102, 189, 165)(104, 134, 155, 157)(105, 176, 137,
117)(106, 120, 187, 163)(107, 184, 190, 164)(108, 186, 167, 111)(109, 113, 191,
162)(110, 173, 166, 118)(112, 150, 160, 141)(114, 131, 149, 170)(115, 145, 148,
158)(116, 139, 180, 174)(119, 183, 161, 146)(121, 154, 153, 140)(122, 138, 144,
159)(123, 142, 178, 126)(124, 185, 181, 147)(125, 156, 169, 143)(127, 136, 151,
171)(128, 192, 175, 133)(129, 182, 179, 130)
c: (1, 4)(2, 8)(3, 5)(6, 20)(7, 17)(9, 31)(10, 81)(11, 27)(12, 26)(13, 39)(14,
86)(15, 35)(16, 34)(18, 47)(19, 44)(21, 45)(22, 88)(23, 52)(24, 38)(25, 59)(28,
57)(29, 56)(30, 50)(32, 40)(33, 66)(36, 62)(37, 61)(41, 68)(42, 96)(43, 70)(46,
64)(48, 82)(49, 75)(51, 79)(53, 78)(54, 65)(55, 63)(58, 77)(60, 67)(69, 89)(71,
90)(72, 94)(73, 87)(74, 93)(76, 92)(80, 84)(83, 85)(91, 95)(97, 174)(100,
116)(101, 140)(102, 177)(103, 135)(104, 114)(105, 182)(106, 109)(107, 111)(108,
181)(110, 134)(112, 176)(113, 138)(117, 162)(118, 123)(119, 168)(120, 131)(121,
161)(122, 127)(124, 166)(125, 175)(126, 129)(128, 163)(130, 144)(132, 148)(133,
155)(136, 142)(137, 151)(139, 145)(141, 143)(146, 152)(147, 149)(150, 187)(153,
172)(154, 180)(156, 191)(157, 167)(158, 165)(159, 160)(164, 171)(169, 170)(173,
190)(178, 186)(179, 184)(185, 192)(188, 189)
d: (1, 2)(3, 6)(4, 9)(5, 13)(7, 18)(8, 21)(10, 25)(11, 58)(12, 37)(14, 33)(15,
65)(16, 29)(17, 41)(19, 45)(20, 47)(22, 51)(23, 76)(24, 71)(26, 67)(27, 62)(28,
30)(31, 46)(32, 78)(34, 84)(35, 57)(36, 38)(39, 68)(40, 56)(42, 69)(43, 54)(44,
64)(48, 74)(49, 53)(50, 91)(52, 60)(55, 92)(59, 83)(61, 63)(66, 89)(70, 95)(72,
85)(73, 77)(75, 80)(79, 94)(81, 88)(82, 86)(87, 90)(93, 96)(97, 181)(98,
114)(99, 182)(100, 111)(101, 109)(102, 163)(103, 164)(104, 122)(105, 185)(106,
107)(108, 166)(110, 167)(112, 162)(113, 160)(115, 127)(116, 141)(117, 161)(118,
140)(119, 176)(120, 165)(121, 126)(123, 143)(124, 177)(125, 174)(128, 175)(129,
179)(130, 132)(131, 170)(133, 146)(134, 158)(135, 159)(136, 171)(137, 147)(138,
172)(139, 169)(142, 153)(144, 155)(145, 157)(148, 151)(149, 152)(150, 180)(154,
173)(156, 178)(168, 184)(183, 192)(186, 188)(187, 190)(189, 191)
e: (12, 29)(16, 37)(24, 54)(27, 57)(32, 60)(35, 62)(43, 71)(50, 77)(52, 78)(55,
80)(73, 91)(75, 92)(100, 154)(101, 180)(102, 174)(103, 153)(106, 156)(107,
178)(108, 166)(109, 150)(110, 167)(111, 173)(112, 162)(113, 160)(116, 189)(118,
186)(120, 169)(121, 168)(123, 190)(125, 163)(126, 184)(139, 165)(140, 188)(141,
191)(142, 164)(143, 187)
C4[ 192, 36 ]
192
-1 114 170 149 131
-2 170 152 98 131
-3 135 114 149 172
-4 147 169 104 120
-5 103 147 104 153
-6 159 138 152 98
-7 122 144 135 172
-8 146 169 98 120
-9 165 122 137 139
-10 155 125 163 185
-11 101 180 138 117
-12 110 166 150 141
-13 122 137 142 164
-14 121 155 168 185
-15 178 138 117 107
-16 110 166 101 189
-17 103 127 130 153
-18 155 104 159 138
-19 122 144 134 157
-20 113 146 160 98
-21 165 133 114 139
-22 125 183 152 163
-23 101 180 128 131
-24 168 103 150 141
-25 144 102 105 174
-26 143 187 134 124
-27 154 113 140 162
-28 176 189 159 116
-29 167 191 108 109
-30 135 191 119 141
-31 145 158 127 151
-32 111 139 174 186
-33 144 126 105 184
-34 188 134 124 140
-35 111 113 162 186
-36 176 123 190 159
-37 167 180 116 108
-38 143 187 135 119
-39 136 127 171 151
-40 145 178 107 97
-41 132 115 142 164
-42 121 168 182 151
-43 101 189 126 142
-44 110 167 127 130
-45 155 145 158 104
-46 134 157 115 148
-47 133 113 114 160
-48 112 183 162 152
-49 191 128 141 131
-50 143 156 168 103
-51 102 192 149 174
-52 154 140 163 120
-53 189 170 116 175
-54 121 191 109 153
-55 190 139 107 174
-56 156 157 181 106
-57 100 188 112 160
-58 150 161 172 109
-59 177 182 97 130
-60 165 102 118 173
-61 154 100 157 181
-62 112 160 118 173
-63 111 145 173 97
-64 110 132 167 115
-65 156 106 161 172
-66 179 182 129 130
-67 177 123 190 158
-68 136 115 148 171
-69 99 126 148 184
-70 188 136 129 140
-71 180 116 184 164
-72 166 182 151 108
-73 190 126 107 142
-74 112 192 149 162
-75 143 156 163 120
-76 170 150 109 175
-77 121 187 106 153
-78 100 188 125 169
-79 177 147 97 185
-80 165 123 178 102
-81 133 192 128 175
-82 176 146 117 183
-83 99 132 124 181
-84 177 158 118 186
-85 99 166 148 108
-86 133 192 161 119
-87 111 136 129 173
-88 146 128 183 175
-89 99 132 179 129
-90 154 100 179 171
-91 123 178 184 164
-92 187 125 169 106
-93 176 147 117 185
-94 124 137 181 105
-95 179 171 118 186
-96 137 105 161 119
-97 79 59 40 63
-98 2 6 8 20
-99 89 69 83 85
-100 78 57 90 61
-101 11 23 16 43
-102 25 80 60 51
-103 24 5 17 50
-104 45 4 5 18
-105 33 25 94 96
-106 77 56 92 65
-107 55 15 40 73
-108 37 72 29 85
-109 58 29 54 76
-110 44 12 16 64
-111 35 63 32 87
-112 57 48 62 74
-113 35 47 27 20
-114 1 3 47 21
-115 46 68 41 64
-116 37 71 28 53
-117 11 15 82 93
-118 60 62 84 95
-119 38 30 96 86
-120 4 8 52 75
-121 77 14 42 54
-122 13 7 19 9
-123 67 36 80 91
-124 34 26 83 94
-125 22 78 92 10
-126 33 69 73 43
-127 44 17 39 31
-128 88 23 81 49
-129 66 89 70 87
-130 44 66 59 17
-131 1 23 2 49
-132 89 83 41 64
-133 47 81 86 21
-134 34 46 26 19
-135 3 38 7 30
-136 68 70 39 87
-137 13 94 96 9
-138 11 15 6 18
-139 55 9 21 32
-140 34 70 27 52
-141 12 24 49 30
-142 13 73 41 43
-143 26 38 50 75
-144 33 25 7 19
-145 45 40 63 31
-146 88 82 8 20
-147 79 4 5 93
-148 46 68 69 85
-149 1 3 51 74
-150 12 24 58 76
-151 39 72 31 42
-152 22 2 48 6
-153 77 5 17 54
-154 90 27 61 52
-155 45 14 18 10
-156 56 50 75 65
-157 56 46 61 19
-158 45 67 84 31
-159 36 6 28 18
-160 57 47 62 20
-161 58 96 86 65
-162 35 48 27 74
-163 22 52 75 10
-164 13 91 71 41
-165 80 60 9 21
-166 12 16 72 85
-167 44 37 29 64
-168 24 14 50 42
-169 78 4 92 8
-170 1 2 53 76
-171 68 90 39 95
-172 3 58 7 65
-173 60 62 63 87
-174 55 25 51 32
-175 88 81 53 76
-176 36 82 93 28
-177 67 79 59 84
-178 80 91 15 40
-179 66 89 90 95
-180 11 23 37 71
-181 56 61 83 94
-182 66 59 72 42
-183 22 88 48 82
-184 33 69 91 71
-185 79 14 93 10
-186 35 84 95 32
-187 77 26 92 38
-188 34 78 57 70
-189 16 28 53 43
-190 55 67 36 73
-191 49 29 30 54
-192 81 51 74 86
0