[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 61 ] =
PL(Curtain_24(1,8,1,6,14),[4^24,6^16]).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {87, 119}, {94, 126}, {69, 100}, {74, 107}, {70, 101}, {78, 109},
{73, 108}, {91, 126}, {86, 115}, {78, 105}, {79, 103}, {69, 108}, {87, 126},
{75, 98}, {83, 121}, {65, 109}, {87, 121}, {71, 104}, {72, 121}, {64, 115}, {77,
126}, {77, 121}, {95, 107}, {81, 101}, {72, 125}, {88, 109}, {65, 119}, {92,
107}, {94, 102}, {83, 105}, {89, 98}, {93, 102}, {92, 103}, {80, 108}, {72,
117}, {67, 124}, {84, 107}, {40, 105}, {48, 113}, {33, 100}, {63, 122}, {51,
117}, {37, 98}, {45, 101}, {57, 113}, {58, 114}, {59, 115}, {63, 119}, {38,
111}, {39, 110}, {34, 104}, {44, 103}, {43, 102}, {51, 125}, {60, 114}, {44,
124}, {52, 100}, {57, 105}, {35, 114}, {54, 103}, {53, 102}, {32, 118}, {35,
117}, {34, 122}, {47, 119}, {43, 115}, {40, 112}, {55, 111}, {61, 101}, {32,
122}, {50, 104}, {62, 100}, {36, 127}, {41, 114}, {38, 125}, {42, 118}, {41,
116}, {50, 109}, {1, 97}, {14, 110}, {3, 99}, {25, 120}, {26, 120}, {18, 113},
{4, 97}, {5, 99}, {8, 110}, {2, 106}, {24, 112}, {9, 97}, {3, 106}, {1, 106},
{22, 125}, {16, 123}, {8, 99}, {6, 106}, {29, 113}, {19, 127}, {24, 117}, {21,
122}, {25, 118}, {31, 111}, {10, 120}, {17, 99}, {14, 124}, {18, 97}, {8, 124},
{2, 116}, {20, 98}, {27, 108}, {14, 118}, {2, 123}, {23, 110}, {9, 112}, {1,
123}, {5, 127}, {15, 116}, {20, 111}, {3, 127}, {7, 123}, {5, 120}, {10, 116},
{15, 112}, {23, 104}, {20, 148}, {11, 138}, {38, 167}, {17, 144}, {12, 142},
{47, 173}, {67, 192}, {46, 170}, {51, 183}, {11, 142}, {17, 148}, {36, 162},
{12, 139}, {15, 136}, {54, 177}, {20, 156}, {40, 160}, {28, 148}, {23, 159},
{22, 159}, {4, 142}, {43, 161}, {18, 152}, {13, 135}, {55, 189}, {63, 181}, {31,
148}, {38, 173}, {62, 181}, {28, 144}, {29, 145}, {6, 139}, {49, 188}, {27,
150}, {10, 135}, {58, 180}, {61, 179}, {17, 158}, {37, 170}, {36, 171}, {26,
138}, {60, 172}, {9, 152}, {4, 150}, {49, 163}, {32, 178}, {42, 185}, {46, 189},
{45, 190}, {21, 129}, {62, 170}, {23, 130}, {56, 173}, {61, 168}, {8, 158}, {12,
155}, {34, 181}, {29, 138}, {28, 139}, {53, 162}, {4, 156}, {30, 134}, {52,
172}, {3, 154}, {57, 160}, {55, 173}, {59, 161}, {35, 184}, {46, 181}, {6, 154},
{48, 172}, {24, 132}, {52, 168}, {54, 170}, {1, 156}, {44, 177}, {41, 180}, {26,
135}, {11, 150}, {6, 155}, {21, 139}, {53, 171}, {59, 165}, {25, 134}, {36,
187}, {7, 167}, {50, 146}, {34, 130}, {24, 184}, {57, 153}, {61, 157}, {32,
129}, {41, 136}, {9, 171}, {21, 182}, {49, 146}, {35, 128}, {10, 174}, {42,
142}, {37, 129}, {15, 171}, {13, 168}, {56, 157}, {27, 189}, {19, 180}, {46,
137}, {19, 187}, {56, 144}, {48, 153}, {13, 167}, {47, 133}, {30, 180}, {28,
182}, {25, 179}, {26, 177}, {39, 140}, {58, 145}, {2, 174}, {42, 134}, {40,
132}, {16, 189}, {62, 147}, {16, 190}, {53, 155}, {16, 160}, {45, 157}, {43,
155}, {19, 163}, {58, 138}, {22, 167}, {50, 131}, {49, 128}, {31, 174}, {60,
141}, {33, 147}, {18, 161}, {52, 135}, {56, 140}, {12, 185}, {13, 184}, {5,
179}, {45, 154}, {54, 129}, {39, 159}, {7, 190}, {37, 156}, {11, 177}, {39,
157}, {63, 133}, {27, 160}, {31, 164}, {30, 165}, {14, 178}, {51, 143}, {29,
161}, {60, 128}, {30, 163}, {48, 141}, {59, 134}, {33, 159}, {55, 137}, {7,
184}, {47, 144}, {68, 133}, {89, 152}, {77, 140}, {84, 149}, {65, 131}, {91,
158}, {96, 165}, {70, 128}, {78, 137}, {82, 149}, {71, 143}, {76, 132}, {73,
130}, {88, 147}, {66, 143}, {92, 145}, {89, 151}, {66, 141}, {88, 151}, {86,
153}, {66, 147}, {64, 146}, {96, 178}, {71, 149}, {69, 150}, {75, 152}, {74,
158}, {71, 146}, {88, 141}, {80, 133}, {81, 132}, {22, 192}, {95, 136}, {79,
151}, {90, 130}, {64, 153}, {78, 151}, {83, 137}, {82, 143}, {85, 136}, {68,
154}, {93, 131}, {79, 145}, {82, 140}, {74, 149}, {96, 191}, {91, 187}, {33,
192}, {68, 166}, {93, 191}, {75, 169}, {77, 175}, {96, 131}, {70, 163}, {84,
178}, {90, 188}, {89, 191}, {86, 176}, {67, 164}, {87, 176}, {94, 182}, {95,
183}, {69, 172}, {90, 179}, {70, 175}, {80, 185}, {83, 186}, {76, 166}, {92,
183}, {93, 182}, {44, 192}, {67, 174}, {76, 162}, {85, 186}, {73, 185}, {79,
191}, {86, 166}, {65, 176}, {74, 187}, {75, 186}, {84, 165}, {85, 164}, {72,
186}, {91, 169}, {90, 168}, {81, 162}, {66, 183}, {73, 188}, {80, 166}, {94,
169}, {68, 190}, {95, 164}, {64, 188}, {76, 176}, {85, 169}, {82, 175}, {81,
175} }>;
(II) A more general form is to represent the graph as the orbit of {87, 119}
under the group generated by the following permutations:
a: (3, 7)(5, 13)(6, 16)(8, 22)(12, 27)(14, 33)(17, 38)(19, 35)(21, 46)(24,
36)(25, 52)(28, 55)(30, 60)(32, 62)(40, 53)(42, 69)(43, 57)(48, 59)(51, 74)(66,
84)(72, 91)(78, 93)(83, 94)(88, 96)(99, 167)(100, 118)(102, 105)(106, 123)(107,
183)(108, 185)(109, 131)(110, 159)(111, 148)(112, 171)(113, 161)(114, 180)(115,
153)(117, 187)(120, 135)(121, 126)(122, 181)(124, 192)(125, 158)(127, 184)(128,
163)(129, 170)(132, 162)(134, 172)(137, 182)(139, 189)(141, 165)(142, 150)(143,
149)(144, 173)(147, 178)(151, 191)(154, 190)(155, 160)(168, 179)(169, 186) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 16)(4, 10)(5, 27)(6, 7)(8, 46)(9, 15)(11, 26)(12, 13)(14, 62)(17,
55)(18, 41)(19, 57)(20, 31)(21, 22)(23, 34)(24, 53)(25, 69)(28, 38)(29, 58)(30,
48)(32, 33)(35, 43)(36, 40)(37, 67)(39, 63)(42, 52)(44, 54)(45, 68)(47, 56)(49,
64)(50, 71)(51, 93)(59, 60)(61, 80)(65, 82)(66, 96)(70, 86)(72, 94)(73, 90)(74,
78)(75, 85)(76, 81)(77, 87)(79, 92)(83, 91)(84, 88)(89, 95)(97, 116)(98,
164)(99, 189)(100, 118)(101, 166)(102, 117)(105, 187)(106, 123)(107, 151)(108,
179)(109, 149)(110, 181)(111, 148)(112, 171)(113, 180)(114, 161)(115, 128)(119,
140)(120, 150)(121, 126)(122, 159)(124, 170)(125, 182)(127, 160)(129, 192)(131,
143)(132, 162)(133, 157)(134, 172)(135, 142)(136, 152)(137, 158)(139, 167)(141,
165)(144, 173)(147, 178)(153, 163)(154, 190)(155, 184)(156, 174)(168, 185)(169,
186)(175, 176)(183, 191)
c: (2, 4)(3, 18, 7, 37)(5, 29, 13, 54)(6, 9, 16, 20)(8, 59, 35, 62)(10, 11)(12,
15, 27, 31)(14, 30, 60, 33)(17, 43, 24, 46)(19, 48, 22, 32)(21, 36, 57, 38)(23,
84, 49, 66)(25, 58, 52, 44)(28, 53, 40, 55)(34, 74, 64, 51)(39, 96, 70, 88)(41,
69, 67, 42)(45, 89)(47, 94, 76, 83)(50, 82)(56, 93, 81, 78)(61, 79)(63, 91, 86,
72)(65, 77)(68, 75)(73, 95)(80, 85)(90, 92)(97, 123, 156, 106)(98, 154, 152,
190)(99, 161, 184, 170)(100, 124, 134, 114)(101, 151, 157, 191)(102, 132, 137,
144)(103, 179, 145, 168)(104, 149, 146, 143)(105, 173, 182, 162)(107, 188, 183,
130)(108, 164, 185, 136)(109, 140, 131, 175)(110, 165, 128, 147)(111, 139, 171,
160)(112, 189, 148, 155)(113, 167, 129, 127)(115, 117, 181, 158)(116, 150, 174,
142)(118, 180, 172, 192)(119, 126, 176, 121)(120, 138, 135, 177)(122, 187, 153,
125)(133, 169, 166, 186)(141, 159, 178, 163)
d: (1, 3, 8, 23, 50, 78, 40, 15, 10, 25, 32, 63, 87, 72, 35, 58, 11, 12, 28, 56,
82, 66, 48, 18)(2, 5, 14, 34, 65, 83, 24, 41, 26, 42, 21, 47, 77, 51, 60, 29, 4,
6, 17, 39, 71, 88, 57, 9)(7, 19, 44, 73, 93, 55, 81, 95, 52, 59, 37, 68, 91, 22,
49, 79, 27, 53, 31, 61, 84, 62, 86, 75)(13, 30, 54, 80, 94, 38, 70, 92, 69, 43,
20, 45, 74, 33, 64, 89, 16, 36, 67, 90, 96, 46, 76, 85)(97, 106, 99, 110, 104,
109, 105, 112, 116, 120, 118, 122, 119, 121, 117, 114, 138, 142, 139, 144, 140,
143, 141, 113)(98, 190, 187, 192, 188, 191, 189, 162, 164, 168, 165, 170, 166,
169, 167, 163, 103, 108, 102, 111, 101, 107, 100, 115)(123, 127, 124, 130, 131,
137, 132, 136, 135, 134, 129, 133, 126, 125, 128, 145, 150, 155, 148, 157, 149,
147, 153, 152)(146, 151, 160, 171, 174, 179, 178, 181, 176, 186, 184, 180, 177,
185, 182, 173, 175, 183, 172, 161, 156, 154, 158, 159)
C4[ 192, 61 ]
192
-1 123 156 106 97
-2 123 116 106 174
-3 99 154 127 106
-4 156 150 97 142
-5 99 179 127 120
-6 154 155 106 139
-7 123 167 190 184
-8 99 110 124 158
-9 112 171 97 152
-10 135 116 174 120
-11 177 138 150 142
-12 155 139 185 142
-13 167 135 168 184
-14 110 178 124 118
-15 112 136 116 171
-16 123 189 190 160
-17 99 144 158 148
-18 113 161 97 152
-19 187 180 127 163
-20 111 156 148 98
-21 122 182 139 129
-22 167 125 159 192
-23 110 104 159 130
-24 132 112 117 184
-25 134 179 118 120
-26 177 135 138 120
-27 189 160 150 108
-28 144 148 182 139
-29 145 113 138 161
-30 165 134 180 163
-31 111 148 174 164
-32 122 178 118 129
-33 100 147 159 192
-34 122 104 181 130
-35 114 117 128 184
-36 187 127 171 162
-37 156 170 129 98
-38 111 167 125 173
-39 110 157 159 140
-40 132 112 105 160
-41 114 136 180 116
-42 134 118 185 142
-43 155 102 115 161
-44 177 124 103 192
-45 154 101 157 190
-46 189 137 170 181
-47 133 144 173 119
-48 113 172 141 153
-49 188 146 128 163
-50 146 104 109 131
-51 143 125 117 183
-52 100 135 168 172
-53 155 102 171 162
-54 177 103 170 129
-55 111 189 137 173
-56 144 157 140 173
-57 113 105 160 153
-58 145 114 180 138
-59 165 134 115 161
-60 114 128 172 141
-61 101 157 168 179
-62 100 147 170 181
-63 122 133 181 119
-64 188 146 115 153
-65 176 119 109 131
-66 143 147 183 141
-67 124 192 174 164
-68 154 133 166 190
-69 100 150 172 108
-70 101 128 163 175
-71 143 146 104 149
-72 121 125 117 186
-73 188 108 130 185
-74 187 158 149 107
-75 169 152 98 186
-76 132 176 166 162
-77 121 126 140 175
-78 137 105 151 109
-79 145 103 191 151
-80 133 166 108 185
-81 132 101 162 175
-82 143 149 140 175
-83 121 137 105 186
-84 165 178 149 107
-85 136 169 164 186
-86 176 166 115 153
-87 121 176 126 119
-88 147 151 141 109
-89 191 151 152 98
-90 188 168 179 130
-91 187 158 169 126
-92 145 103 183 107
-93 102 191 182 131
-94 102 169 126 182
-95 136 183 107 164
-96 165 178 191 131
-97 1 4 18 9
-98 89 37 20 75
-99 3 5 17 8
-100 33 69 62 52
-101 45 70 81 61
-102 93 94 53 43
-103 44 79 92 54
-104 23 34 71 50
-105 78 57 83 40
-106 1 2 3 6
-107 92 84 95 74
-108 69 80 27 73
-109 88 78 50 65
-110 23 14 39 8
-111 55 38 20 31
-112 24 15 40 9
-113 57 48 18 29
-114 35 58 60 41
-115 59 64 86 43
-116 2 15 41 10
-117 24 35 72 51
-118 14 25 42 32
-119 47 63 65 87
-120 25 26 5 10
-121 77 72 83 87
-122 34 63 21 32
-123 1 2 16 7
-124 44 67 14 8
-125 22 38 72 51
-126 77 91 94 87
-127 3 36 5 19
-128 35 70 49 60
-129 37 21 32 54
-130 23 34 90 73
-131 93 50 96 65
-132 24 81 40 76
-133 68 47 80 63
-134 25 59 30 42
-135 13 26 52 10
-136 15 95 41 85
-137 55 78 46 83
-138 11 58 26 29
-139 12 6 28 21
-140 77 56 82 39
-141 66 88 48 60
-142 11 12 4 42
-143 66 71 82 51
-144 56 47 17 28
-145 79 58 92 29
-146 49 71 50 64
-147 33 66 88 62
-148 17 28 20 31
-149 71 82 84 74
-150 11 69 4 27
-151 88 78 89 79
-152 89 18 9 75
-153 57 48 64 86
-154 45 68 3 6
-155 12 6 53 43
-156 1 4 37 20
-157 45 56 39 61
-158 91 17 8 74
-159 22 33 23 39
-160 57 16 27 40
-161 59 18 29 43
-162 36 81 53 76
-163 70 49 19 30
-164 67 95 85 31
-165 59 84 30 96
-166 68 80 86 76
-167 22 13 38 7
-168 13 90 61 52
-169 91 94 85 75
-170 46 37 62 54
-171 36 15 9 53
-172 69 48 60 52
-173 55 56 47 38
-174 67 2 31 10
-175 77 70 81 82
-176 86 65 76 87
-177 11 44 26 54
-178 14 84 96 32
-179 90 25 5 61
-180 58 19 30 41
-181 34 46 62 63
-182 93 28 94 21
-183 66 92 51 95
-184 13 24 35 7
-185 12 80 73 42
-186 72 83 85 75
-187 36 91 19 74
-188 90 49 73 64
-189 55 46 16 27
-190 45 68 16 7
-191 89 79 93 96
-192 22 33 44 67
0