C4graphGraph forms for C4 [ 192, 65 ] = PL(Curtain_24(1,12,3,10,22),[4^24,48^2])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 65 ] = PL(Curtain_24(1,12,3,10,22),[4^24,48^2]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 102}, {84, 116}, {85, 116}, {89, 120}, {82, 112}, {86, 116}, {72, 108}, {85, 113}, {73, 111}, {74, 108}, {65, 102}, {89, 126}, {78, 102}, {86, 126}, {68, 109}, {70, 111}, {65, 106}, {90, 113}, {69, 105}, {93, 113}, {86, 120}, {94, 113}, {92, 109}, {81, 98}, {64, 116}, {66, 118}, {76, 120}, {69, 112}, {88, 109}, {76, 118}, {81, 109}, {90, 102}, {87, 106}, {41, 106}, {38, 99}, {46, 107}, {56, 126}, {63, 120}, {42, 98}, {44, 100}, {55, 126}, {37, 110}, {40, 99}, {41, 103}, {51, 125}, {38, 105}, {50, 125}, {33, 112}, {61, 108}, {36, 118}, {60, 111}, {41, 125}, {57, 111}, {42, 125}, {59, 108}, {50, 106}, {48, 105}, {59, 98}, {61, 100}, {57, 99}, {62, 98}, {39, 122}, {47, 114}, {45, 112}, {54, 107}, {58, 103}, {36, 122}, {55, 105}, {1, 97}, {26, 122}, {18, 114}, {4, 101}, {22, 119}, {12, 110}, {20, 118}, {5, 97}, {15, 107}, {22, 115}, {3, 101}, {8, 110}, {20, 115}, {24, 127}, {1, 104}, {27, 114}, {2, 104}, {3, 104}, {17, 122}, {30, 114}, {31, 115}, {8, 101}, {26, 119}, {9, 100}, {27, 117}, {29, 115}, {7, 104}, {12, 124}, {17, 97}, {13, 124}, {14, 127}, {7, 117}, {21, 103}, {11, 121}, {24, 107}, {8, 124}, {23, 99}, {15, 123}, {2, 119}, {10, 127}, {9, 124}, {14, 121}, {19, 100}, {18, 101}, {2, 123}, {30, 103}, {14, 119}, {12, 117}, {1, 123}, {5, 127}, {21, 110}, {5, 121}, {4, 121}, {6, 123}, {11, 117}, {31, 97}, {7, 135}, {29, 157}, {4, 133}, {44, 173}, {34, 163}, {19, 146}, {60, 190}, {23, 148}, {67, 192}, {50, 182}, {56, 189}, {3, 133}, {21, 147}, {17, 150}, {31, 152}, {41, 161}, {42, 162}, {20, 157}, {49, 184}, {31, 150}, {51, 186}, {54, 191}, {34, 168}, {45, 167}, {32, 171}, {36, 175}, {35, 168}, {11, 135}, {48, 188}, {55, 187}, {57, 181}, {43, 166}, {46, 163}, {52, 185}, {18, 156}, {44, 162}, {40, 166}, {22, 152}, {61, 179}, {40, 184}, {52, 164}, {62, 174}, {23, 134}, {29, 140}, {51, 162}, {63, 174}, {52, 166}, {56, 170}, {1, 146}, {21, 134}, {7, 148}, {8, 156}, {16, 133}, {43, 190}, {34, 183}, {18, 132}, {47, 185}, {22, 128}, {3, 148}, {49, 166}, {39, 176}, {19, 132}, {5, 146}, {53, 162}, {28, 132}, {88, 192}, {30, 134}, {53, 173}, {46, 183}, {53, 172}, {26, 128}, {49, 171}, {51, 169}, {9, 146}, {48, 171}, {58, 161}, {62, 165}, {32, 188}, {35, 191}, {32, 189}, {55, 170}, {25, 135}, {27, 132}, {13, 172}, {48, 145}, {27, 186}, {10, 168}, {16, 178}, {59, 153}, {17, 178}, {43, 136}, {58, 153}, {33, 133}, {57, 157}, {10, 175}, {47, 138}, {39, 130}, {63, 154}, {32, 134}, {36, 130}, {30, 185}, {59, 156}, {61, 154}, {24, 176}, {26, 178}, {62, 150}, {6, 175}, {54, 159}, {60, 149}, {23, 189}, {45, 135}, {35, 137}, {25, 178}, {39, 140}, {34, 137}, {28, 177}, {29, 176}, {54, 155}, {6, 168}, {10, 164}, {37, 138}, {56, 151}, {60, 147}, {19, 163}, {28, 172}, {15, 190}, {46, 159}, {13, 191}, {38, 148}, {2, 177}, {49, 130}, {25, 170}, {63, 140}, {37, 145}, {53, 129}, {58, 142}, {40, 157}, {45, 152}, {9, 191}, {44, 154}, {42, 156}, {37, 147}, {12, 186}, {11, 188}, {38, 145}, {4, 188}, {43, 147}, {35, 155}, {6, 190}, {50, 138}, {33, 152}, {16, 170}, {20, 175}, {13, 177}, {24, 164}, {52, 136}, {25, 167}, {47, 145}, {14, 177}, {28, 163}, {15, 176}, {67, 131}, {77, 141}, {78, 142}, {79, 143}, {94, 159}, {95, 158}, {77, 143}, {92, 158}, {87, 149}, {66, 129}, {79, 140}, {68, 128}, {91, 159}, {70, 130}, {84, 144}, {82, 151}, {78, 136}, {88, 158}, {83, 149}, {81, 150}, {65, 136}, {71, 142}, {74, 129}, {91, 144}, {75, 128}, {87, 155}, {66, 143}, {90, 151}, {71, 138}, {76, 129}, {64, 143}, {95, 144}, {16, 192}, {72, 153}, {80, 131}, {94, 141}, {89, 141}, {95, 139}, {79, 154}, {91, 141}, {93, 139}, {83, 139}, {90, 131}, {65, 155}, {73, 149}, {87, 139}, {85, 137}, {83, 142}, {84, 137}, {71, 153}, {93, 131}, {64, 160}, {33, 192}, {72, 169}, {67, 161}, {75, 169}, {76, 174}, {83, 183}, {95, 187}, {69, 160}, {75, 174}, {81, 180}, {67, 165}, {93, 187}, {74, 172}, {80, 182}, {84, 179}, {91, 179}, {92, 182}, {89, 181}, {68, 169}, {70, 171}, {73, 164}, {77, 160}, {75, 165}, {86, 184}, {82, 189}, {68, 180}, {96, 144}, {73, 185}, {71, 182}, {72, 186}, {82, 160}, {70, 181}, {94, 173}, {80, 165}, {66, 180}, {80, 167}, {96, 151}, {64, 184}, {85, 173}, {77, 181}, {74, 179}, {88, 161}, {78, 183}, {79, 180}, {92, 167}, {69, 187}, {96, 158} }>;

(II) A more general form is to represent the graph as the orbit of {96, 102} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(10, 26)(11, 28)(12, 18)(15, 31)(16, 35)(20, 39)(21, 42)(22, 24)(23, 44)(25, 34)(30, 51)(32, 53)(33, 54)(37, 59)(38, 61)(40, 63)(43, 62)(45, 46)(47, 72)(48, 74)(49, 76)(50, 58)(52, 75)(55, 84)(56, 85)(57, 79)(60, 81)(64, 89)(65, 67)(66, 70)(68, 73)(69, 91)(78, 80)(82, 94)(83, 92)(87, 88)(93, 96)(97, 123)(98, 147)(99, 154)(100, 148)(101, 124)(102, 131)(103, 125)(104, 146)(105, 179)(106, 161)(107, 152)(108, 145)(109, 149)(110, 156)(111, 180)(112, 159)(113, 151)(114, 186)(115, 176)(116, 126)(117, 132)(118, 130)(119, 127)(120, 184)(121, 177)(122, 175)(128, 164)(129, 171)(133, 191)(134, 162)(135, 163)(136, 165)(137, 170)(138, 153)(139, 158)(140, 157)(141, 160)(142, 182)(143, 181)(144, 187)(150, 190)(155, 192)(166, 174)(167, 183)(168, 178)(169, 185)(172, 188)(173, 189)
b: (3, 15)(4, 24)(6, 7)(8, 29)(9, 31)(10, 11)(12, 20)(13, 22)(16, 46)(17, 19)(18, 39)(21, 57)(23, 60)(25, 34)(26, 28)(27, 36)(30, 70)(32, 73)(33, 54)(35, 45)(37, 40)(38, 43)(41, 77)(42, 79)(44, 81)(47, 49)(48, 52)(50, 64)(51, 66)(53, 68)(55, 78)(56, 83)(58, 89)(59, 63)(61, 62)(65, 69)(67, 91)(71, 86)(72, 76)(74, 75)(80, 84)(82, 87)(85, 92)(88, 94)(90, 95)(93, 96)(97, 146)(98, 154)(99, 147)(100, 150)(101, 176)(102, 187)(103, 181)(104, 123)(105, 136)(106, 160)(107, 133)(108, 174)(109, 173)(110, 157)(111, 134)(112, 155)(113, 158)(114, 130)(115, 124)(116, 182)(117, 175)(118, 186)(119, 177)(120, 153)(121, 127)(122, 132)(125, 143)(126, 142)(128, 172)(129, 169)(131, 144)(135, 168)(137, 167)(138, 184)(139, 151)(140, 156)(141, 161)(145, 166)(148, 190)(149, 189)(152, 191)(159, 192)(162, 180)(163, 178)(164, 188)(165, 179)(170, 183)(171, 185)
c: (1, 3, 33, 82, 96, 84, 34, 28, 14, 11, 25, 55, 93, 94, 54, 9)(2, 4, 45, 56, 95, 85, 46, 13, 5, 7, 16, 69, 90, 91, 35, 19)(6, 18, 22, 32, 92, 86, 83, 53, 24, 12, 17, 38, 67, 77, 65, 61)(8, 31, 23, 88, 64, 78, 74, 10, 27, 26, 48, 80, 89, 87, 44, 15)(20, 30, 68, 49, 71, 76, 73, 51, 39, 37, 62, 57, 41, 79, 43, 59)(21, 81, 40, 58, 66, 52, 72, 36, 47, 75, 70, 50, 63, 60, 42, 29)(97, 148, 192, 160, 102, 179, 168, 132, 119, 188, 167, 126, 139, 173, 107, 124)(98, 157, 103, 180, 166, 153, 118, 185, 169, 130, 138, 174, 111, 125, 140, 147)(99, 161, 143, 136, 108, 175, 114, 128, 171, 182, 120, 149, 162, 176, 110, 150)(100, 123, 101, 152, 189, 158, 116, 183, 172, 127, 117, 178, 105, 131, 141, 155)(104, 133, 112, 151, 144, 137, 163, 177, 121, 135, 170, 187, 113, 159, 191, 146)(106, 154, 190, 156, 115, 134, 109, 184, 142, 129, 164, 186, 122, 145, 165, 181)
d: (1, 2)(3, 7)(4, 11)(5, 14)(6, 15)(8, 12)(9, 13)(10, 24)(16, 25)(17, 26)(18, 27)(19, 28)(20, 29)(21, 37)(22, 31)(23, 38)(30, 47)(32, 48)(33, 45)(34, 46)(35, 54)(36, 39)(40, 57)(41, 50)(42, 51)(43, 60)(44, 53)(49, 70)(52, 73)(55, 56)(58, 71)(59, 72)(61, 74)(62, 75)(63, 76)(64, 77)(65, 87)(66, 79)(67, 80)(68, 81)(69, 82)(78, 83)(84, 91)(85, 94)(86, 89)(88, 92)(90, 93)(95, 96)(97, 119)(98, 169)(100, 172)(101, 117)(102, 139)(103, 138)(105, 189)(107, 168)(111, 166)(116, 141)(118, 140)(128, 150)(129, 154)(133, 135)(134, 145)(136, 149)(137, 159)(146, 177)(151, 187)(156, 186)(161, 182)(167, 192)(175, 176)(181, 184)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 65 ]
192
-1 123 146 104 97
-2 177 123 104 119
-3 133 101 104 148
-4 121 133 188 101
-5 121 146 127 97
-6 123 168 190 175
-7 135 104 148 117
-8 110 101 156 124
-9 100 124 146 191
-10 168 127 164 175
-11 121 188 135 117
-12 110 124 117 186
-13 177 124 191 172
-14 121 177 127 119
-15 176 123 190 107
-16 133 178 170 192
-17 122 178 150 97
-18 132 101 156 114
-19 132 100 146 163
-20 157 115 118 175
-21 110 134 103 147
-22 115 128 119 152
-23 99 134 189 148
-24 176 127 107 164
-25 167 178 135 170
-26 122 178 128 119
-27 132 114 117 186
-28 132 177 172 163
-29 176 157 115 140
-30 134 103 114 185
-31 115 150 97 152
-32 188 134 189 171
-33 133 112 192 152
-34 168 137 183 163
-35 155 168 191 137
-36 122 118 130 175
-37 110 145 147 138
-38 99 145 148 105
-39 176 122 140 130
-40 99 166 157 184
-41 103 125 106 161
-42 156 125 162 98
-43 166 190 136 147
-44 154 100 162 173
-45 112 167 135 152
-46 159 183 107 163
-47 145 114 138 185
-48 188 145 105 171
-49 166 171 184 130
-50 125 138 182 106
-51 125 169 162 186
-52 166 136 185 164
-53 172 129 162 173
-54 155 191 159 107
-55 187 126 170 105
-56 189 126 170 151
-57 99 111 157 181
-58 103 161 142 153
-59 156 108 98 153
-60 111 190 147 149
-61 154 100 179 108
-62 165 150 174 98
-63 154 140 174 120
-64 143 116 160 184
-65 155 102 136 106
-66 143 180 118 129
-67 165 192 161 131
-68 169 180 128 109
-69 187 112 105 160
-70 111 181 171 130
-71 138 182 142 153
-72 169 108 153 186
-73 111 149 185 164
-74 179 172 129 108
-75 165 169 128 174
-76 118 129 174 120
-77 143 181 160 141
-78 102 136 183 142
-79 143 154 180 140
-80 165 167 182 131
-81 180 150 98 109
-82 112 189 160 151
-83 149 139 183 142
-84 144 179 137 116
-85 113 137 116 173
-86 126 116 184 120
-87 155 149 106 139
-88 158 192 161 109
-89 126 181 141 120
-90 102 113 151 131
-91 144 179 159 141
-92 167 158 182 109
-93 187 113 139 131
-94 113 159 173 141
-95 187 144 158 139
-96 144 102 158 151
-97 1 5 17 31
-98 59 81 62 42
-99 23 57 38 40
-100 44 61 19 9
-101 3 4 18 8
-102 78 90 96 65
-103 58 30 41 21
-104 1 2 3 7
-105 55 69 48 38
-106 50 41 65 87
-107 24 46 15 54
-108 59 61 72 74
-109 88 68 81 92
-110 12 37 8 21
-111 57 70 60 73
-112 33 45 69 82
-113 90 93 94 85
-114 47 27 18 30
-115 22 29 20 31
-116 84 85 64 86
-117 11 12 27 7
-118 66 36 20 76
-119 22 2 14 26
-120 89 63 86 76
-121 11 14 4 5
-122 36 26 17 39
-123 1 2 15 6
-124 12 13 8 9
-125 50 51 41 42
-126 55 56 89 86
-127 24 14 5 10
-128 22 68 26 75
-129 66 74 53 76
-130 36 70 49 39
-131 67 90 80 93
-132 27 28 18 19
-133 33 3 4 16
-134 23 30 21 32
-135 11 45 25 7
-136 78 52 43 65
-137 34 35 84 85
-138 47 37 71 50
-139 93 83 95 87
-140 79 39 29 63
-141 77 89 91 94
-142 78 58 71 83
-143 66 77 79 64
-144 91 84 95 96
-145 47 37 48 38
-146 1 5 19 9
-147 37 60 21 43
-148 23 3 38 7
-149 60 83 73 87
-150 81 17 62 31
-151 56 90 82 96
-152 22 33 45 31
-153 58 59 71 72
-154 44 79 61 63
-155 35 54 65 87
-156 59 18 8 42
-157 57 29 40 20
-158 88 92 95 96
-159 46 91 94 54
-160 77 69 82 64
-161 88 67 58 41
-162 44 51 42 53
-163 34 46 28 19
-164 24 73 52 10
-165 67 80 62 75
-166 49 40 52 43
-167 45 25 80 92
-168 34 35 6 10
-169 68 72 51 75
-170 55 56 25 16
-171 48 70 49 32
-172 13 28 74 53
-173 44 94 85 53
-174 62 63 75 76
-175 36 6 20 10
-176 24 15 39 29
-177 2 13 14 28
-178 25 26 16 17
-179 91 61 84 74
-180 66 68 79 81
-181 77 89 57 70
-182 80 92 71 50
-183 34 78 46 83
-184 49 40 64 86
-185 47 73 30 52
-186 12 27 72 51
-187 55 69 93 95
-188 11 4 48 32
-189 23 56 82 32
-190 15 60 6 43
-191 13 35 9 54
-192 33 88 67 16
0

**************