[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 192, 66 ]. See Glossary for some
detail.
PL(Curtain_ 24( 1, 12, 5, 7, 17), [4^24, 16^6]) = PL(CS(R_ 12( 5, 10)[
8^ 6], 1))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 10 |
2 | - | - | - | - | 12 | 0 | - | 0 22 |
3 | - | - | - | - | 1 | 0 | 0 19 | - |
4 | - | - | - | - | 3 | 14 | 2 9 | - |
5 | 0 | 12 | 23 | 21 | - | - | - | - |
6 | 0 | 0 | 0 | 10 | - | - | - | - |
7 | - | - | 0 5 | 15 22 | - | - | - | - |
8 | 0 14 | 0 2 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 10 |
2 | - | - | - | - | 12 | 0 | - | 0 22 |
3 | - | - | - | - | 1 | 0 | 0 7 | - |
4 | - | - | - | - | 1 | 12 | 0 19 | - |
5 | 0 | 12 | 23 | 23 | - | - | - | - |
6 | 0 | 0 | 0 | 12 | - | - | - | - |
7 | - | - | 0 17 | 0 5 | - | - | - | - |
8 | 0 14 | 0 2 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 8 | 0 | 8 | 0 | - | - |
3 | - | - | - | - | - | - | 1 | - | - | 0 | 0 | 0 |
4 | - | - | - | - | - | - | 9 | - | - | 8 | 0 | 0 |
5 | - | - | - | - | - | - | - | 0 | 13 | - | 9 | 3 |
6 | - | - | - | - | - | - | - | 5 | 2 | - | 6 | 0 |
7 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 0 | 11 | - | - | - | - | - | - |
9 | 0 | 8 | - | - | 3 | 14 | - | - | - | - | - | - |
10 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 7 | 10 | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 13 | 0 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
2 | - | - | - | - | - | - | 8 | 0 | 0 | - | 8 | - |
3 | - | - | - | - | - | - | - | 0 | - | - | 1 | 0 11 |
4 | - | - | - | - | - | - | - | 8 | - | - | 9 | 0 11 |
5 | - | - | - | - | - | - | 13 | - | 0 | 0 1 | - | - |
6 | - | - | - | - | - | - | 0 | - | 3 | 11 12 | - | - |
7 | 0 | 8 | - | - | 3 | 0 | - | - | - | - | - | - |
8 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 0 | 13 | - | - | - | - | - | - |
10 | - | - | - | - | 0 15 | 4 5 | - | - | - | - | - | - |
11 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
12 | - | - | 0 5 | 0 5 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
2 | - | - | - | - | - | - | 8 | 0 | 0 | - | 8 | - |
3 | - | - | - | - | - | - | - | 0 | - | - | 1 | 0 11 |
4 | - | - | - | - | - | - | - | 8 | - | - | 9 | 0 11 |
5 | - | - | - | - | - | - | 13 | - | 0 | 0 7 | - | - |
6 | - | - | - | - | - | - | 5 | - | 8 | 0 7 | - | - |
7 | 0 | 8 | - | - | 3 | 11 | - | - | - | - | - | - |
8 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 0 | 8 | - | - | - | - | - | - |
10 | - | - | - | - | 0 9 | 0 9 | - | - | - | - | - | - |
11 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
12 | - | - | 0 5 | 0 5 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 8 | 0 | 8 | 0 | - | - |
3 | - | - | - | - | - | - | 1 | - | - | 0 | 0 | 0 |
4 | - | - | - | - | - | - | 9 | - | - | 8 | 0 | 0 |
5 | - | - | - | - | - | - | - | 0 | 13 | - | 1 | 3 |
6 | - | - | - | - | - | - | - | 5 | 2 | - | 14 | 0 |
7 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 0 | 11 | - | - | - | - | - | - |
9 | 0 | 8 | - | - | 3 | 14 | - | - | - | - | - | - |
10 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 15 | 2 | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 13 | 0 | - | - | - | - | - | - |