[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 192, 67 ]. See Glossary for some
detail.
PL(Curtain_ 24( 1, 12, 7, 11, 23), [4^24, 16^6]) = PL(CS(R_ 12( 11, 4)[
8^ 6], 1))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | - | 0 | 0 |
2 | - | - | - | - | 0 13 | - | 0 | 12 |
3 | - | - | - | - | - | 0 16 | 0 | 13 |
4 | - | - | - | - | - | 0 4 | 12 | 13 |
5 | 0 23 | 0 11 | - | - | - | - | - | - |
6 | - | - | 0 8 | 0 20 | - | - | - | - |
7 | 0 | 0 | 0 | 12 | - | - | - | - |
8 | 0 | 12 | 11 | 11 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | - | 0 | 0 |
2 | - | - | - | - | 0 13 | - | 0 | 12 |
3 | - | - | - | - | - | 0 4 | 0 | 13 |
4 | - | - | - | - | - | 0 16 | 12 | 13 |
5 | 0 23 | 0 11 | - | - | - | - | - | - |
6 | - | - | 0 20 | 0 8 | - | - | - | - |
7 | 0 | 0 | 0 | 12 | - | - | - | - |
8 | 0 | 12 | 11 | 11 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
2 | - | - | - | - | - | - | 8 | 0 | 0 | - | 8 | - |
3 | - | - | - | - | - | - | - | 0 | - | - | 1 | 0 15 |
4 | - | - | - | - | - | - | - | 8 | - | - | 9 | 0 15 |
5 | - | - | - | - | - | - | 13 | - | 0 | 0 3 | - | - |
6 | - | - | - | - | - | - | 0 | - | 3 | 11 14 | - | - |
7 | 0 | 8 | - | - | 3 | 0 | - | - | - | - | - | - |
8 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 0 | 13 | - | - | - | - | - | - |
10 | - | - | - | - | 0 13 | 2 5 | - | - | - | - | - | - |
11 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
12 | - | - | 0 1 | 0 1 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 8 | 0 | 8 | 0 | - | - |
3 | - | - | - | - | - | - | 1 | - | - | 0 | 0 | 0 |
4 | - | - | - | - | - | - | 9 | - | - | 8 | 0 | 0 |
5 | - | - | - | - | - | - | - | 0 | 5 | - | 5 | 7 |
6 | - | - | - | - | - | - | - | 1 | 6 | - | 14 | 0 |
7 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 0 | 15 | - | - | - | - | - | - |
9 | 0 | 8 | - | - | 11 | 10 | - | - | - | - | - | - |
10 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 11 | 2 | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 9 | 0 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
2 | - | - | - | - | - | - | 8 | 0 | 0 | - | 8 | - |
3 | - | - | - | - | - | - | - | 0 | - | - | 1 | 0 7 |
4 | - | - | - | - | - | - | - | 8 | - | - | 9 | 0 7 |
5 | - | - | - | - | - | - | 5 | - | 0 | 0 11 | - | - |
6 | - | - | - | - | - | - | 0 | - | 11 | 3 14 | - | - |
7 | 0 | 8 | - | - | 11 | 0 | - | - | - | - | - | - |
8 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 0 | 5 | - | - | - | - | - | - |
10 | - | - | - | - | 0 5 | 2 13 | - | - | - | - | - | - |
11 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
12 | - | - | 0 9 | 0 9 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | - | - | 8 | 0 | 8 | 0 | - | - |
3 | - | - | - | - | - | - | 1 | - | - | 0 | 0 | 0 |
4 | - | - | - | - | - | - | 9 | - | - | 8 | 0 | 0 |
5 | - | - | - | - | - | - | - | 0 | 13 | - | 13 | 15 |
6 | - | - | - | - | - | - | - | 8 | 5 | - | 13 | 15 |
7 | 0 | 8 | 15 | 7 | - | - | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 0 | 8 | - | - | - | - | - | - |
9 | 0 | 8 | - | - | 3 | 11 | - | - | - | - | - | - |
10 | 0 | 0 | 0 | 8 | - | - | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 3 | 3 | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 1 | 1 | - | - | - | - | - | - |