C4graphGraph forms for C4 [ 192, 69 ] = PL(Curtain_24(1,12,9,10,22),[4^24,12^8])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 69 ] = PL(Curtain_24(1,12,9,10,22),[4^24,12^8]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {96, 100}, {67, 99}, {94, 126}, {70, 102}, {79, 109}, {92, 126}, {67, 103}, {64, 101}, {77, 104}, {64, 102}, {88, 126}, {77, 101}, {68, 109}, {74, 99}, {78, 103}, {66, 104}, {88, 116}, {65, 111}, {85, 101}, {76, 126}, {81, 99}, {71, 116}, {91, 104}, {69, 113}, {68, 113}, {93, 104}, {82, 100}, {84, 99}, {76, 116}, {95, 103}, {75, 113}, {83, 105}, {92, 103}, {95, 100}, {76, 113}, {84, 105}, {71, 120}, {91, 100}, {58, 120}, {42, 105}, {47, 108}, {43, 111}, {46, 107}, {48, 118}, {62, 120}, {33, 102}, {48, 120}, {60, 116}, {45, 102}, {35, 111}, {35, 108}, {45, 98}, {32, 112}, {61, 109}, {56, 105}, {36, 118}, {56, 107}, {63, 107}, {39, 114}, {55, 98}, {50, 101}, {37, 125}, {51, 107}, {38, 127}, {54, 111}, {40, 115}, {54, 109}, {1, 97}, {31, 127}, {27, 122}, {8, 106}, {23, 117}, {20, 118}, {16, 115}, {17, 114}, {5, 97}, {25, 125}, {23, 115}, {21, 112}, {6, 110}, {23, 127}, {9, 97}, {3, 106}, {22, 124}, {24, 114}, {29, 118}, {2, 110}, {3, 110}, {4, 106}, {20, 122}, {1, 110}, {29, 114}, {28, 115}, {24, 119}, {16, 127}, {17, 97}, {28, 108}, {19, 98}, {14, 124}, {6, 117}, {10, 121}, {9, 122}, {15, 123}, {2, 119}, {10, 125}, {14, 121}, {13, 122}, {11, 124}, {8, 112}, {2, 123}, {21, 108}, {14, 119}, {12, 117}, {5, 124}, {1, 123}, {16, 106}, {13, 119}, {6, 125}, {5, 121}, {12, 112}, {7, 123}, {4, 121}, {31, 98}, {10, 117}, {8, 137}, {46, 175}, {4, 134}, {42, 168}, {41, 171}, {38, 164}, {56, 186}, {19, 151}, {38, 162}, {57, 189}, {3, 134}, {37, 160}, {33, 164}, {12, 137}, {48, 182}, {60, 186}, {37, 162}, {49, 182}, {53, 178}, {29, 149}, {31, 151}, {51, 187}, {13, 132}, {61, 180}, {63, 182}, {16, 154}, {34, 168}, {37, 169}, {58, 182}, {62, 178}, {34, 175}, {41, 164}, {21, 155}, {59, 181}, {52, 187}, {34, 178}, {40, 184}, {39, 183}, {59, 171}, {3, 146}, {20, 133}, {5, 151}, {8, 154}, {51, 161}, {26, 137}, {6, 146}, {46, 186}, {18, 134}, {21, 128}, {63, 170}, {1, 151}, {43, 189}, {27, 141}, {44, 187}, {30, 134}, {42, 178}, {38, 191}, {50, 171}, {49, 168}, {52, 173}, {19, 137}, {49, 170}, {24, 132}, {28, 128}, {52, 168}, {55, 171}, {27, 133}, {51, 173}, {59, 165}, {63, 161}, {36, 187}, {25, 185}, {22, 183}, {47, 142}, {44, 141}, {43, 138}, {33, 128}, {29, 188}, {23, 181}, {40, 138}, {44, 143}, {7, 163}, {35, 135}, {28, 184}, {15, 170}, {26, 191}, {11, 173}, {15, 169}, {53, 147}, {55, 145}, {58, 156}, {34, 133}, {36, 131}, {9, 161}, {50, 154}, {20, 188}, {11, 163}, {41, 128}, {32, 138}, {39, 141}, {18, 185}, {46, 133}, {36, 143}, {27, 183}, {43, 135}, {7, 170}, {56, 149}, {54, 152}, {57, 150}, {60, 147}, {9, 185}, {47, 159}, {44, 156}, {25, 169}, {17, 161}, {52, 132}, {14, 191}, {32, 145}, {18, 163}, {17, 160}, {39, 149}, {33, 146}, {48, 131}, {57, 138}, {60, 143}, {61, 142}, {13, 185}, {26, 174}, {54, 130}, {49, 132}, {50, 135}, {62, 139}, {11, 188}, {25, 174}, {57, 142}, {58, 141}, {15, 183}, {24, 160}, {12, 181}, {47, 150}, {40, 145}, {53, 143}, {7, 188}, {32, 155}, {22, 173}, {18, 174}, {45, 145}, {35, 159}, {30, 162}, {59, 135}, {2, 191}, {31, 162}, {30, 163}, {19, 174}, {26, 164}, {30, 160}, {53, 139}, {22, 169}, {45, 146}, {42, 149}, {61, 130}, {62, 129}, {66, 130}, {80, 144}, {95, 158}, {91, 153}, {75, 136}, {4, 192}, {93, 153}, {92, 152}, {91, 159}, {72, 140}, {71, 129}, {72, 142}, {75, 140}, {95, 152}, {87, 144}, {84, 156}, {88, 144}, {85, 157}, {10, 192}, {73, 130}, {74, 129}, {68, 136}, {96, 172}, {65, 140}, {81, 156}, {82, 159}, {69, 139}, {87, 153}, {80, 158}, {67, 147}, {68, 148}, {70, 150}, {77, 157}, {83, 131}, {89, 136}, {96, 180}, {72, 157}, {64, 150}, {77, 155}, {79, 153}, {67, 148}, {86, 129}, {65, 152}, {90, 131}, {66, 155}, {64, 154}, {82, 136}, {69, 158}, {87, 140}, {79, 148}, {80, 139}, {65, 157}, {78, 147}, {74, 148}, {79, 144}, {93, 189}, {82, 176}, {83, 177}, {70, 165}, {87, 179}, {90, 190}, {89, 189}, {84, 177}, {85, 176}, {86, 179}, {74, 172}, {88, 190}, {66, 165}, {41, 192}, {89, 176}, {78, 167}, {94, 180}, {73, 165}, {85, 184}, {80, 190}, {81, 190}, {73, 184}, {86, 167}, {94, 172}, {70, 181}, {69, 177}, {83, 167}, {90, 175}, {55, 192}, {75, 179}, {94, 166}, {73, 176}, {86, 172}, {92, 166}, {93, 166}, {72, 180}, {71, 186}, {90, 167}, {76, 177}, {78, 179}, {81, 175}, {96, 158}, {89, 166} }>;

(II) A more general form is to represent the graph as the orbit of {96, 100} under the group generated by the following permutations:

a: (3, 6)(4, 10)(7, 15)(8, 12)(11, 22)(16, 23)(18, 25)(20, 27)(29, 39)(30, 37)(36, 44)(48, 58)(50, 59)(54, 65)(61, 72)(64, 70)(66, 77)(67, 78)(68, 75)(73, 85)(74, 86)(79, 87)(81, 90)(83, 84)(99, 167)(101, 165)(106, 117)(109, 140)(118, 141)(125, 134)(130, 157)(131, 156)(148, 179)(154, 181)(163, 169)(183, 188)
b: (1, 3)(2, 6)(4, 5)(7, 45)(8, 9)(10, 14)(11, 55)(12, 13)(15, 33)(16, 17)(18, 19)(20, 32)(21, 27)(22, 41)(23, 24)(25, 26)(28, 39)(29, 40)(30, 31)(34, 66)(35, 44)(36, 43)(37, 38)(42, 73)(46, 77)(47, 58)(48, 57)(49, 70)(50, 51)(52, 59)(53, 54)(56, 85)(60, 65)(61, 62)(63, 64)(67, 95)(68, 69)(71, 72)(74, 96)(75, 76)(78, 92)(79, 80)(81, 91)(82, 84)(83, 89)(86, 94)(87, 88)(90, 93)(97, 106)(98, 163)(99, 100)(101, 107)(102, 170)(104, 175)(105, 176)(108, 141)(109, 139)(111, 143)(112, 122)(114, 115)(116, 140)(117, 119)(118, 138)(120, 142)(123, 146)(124, 192)(125, 191)(126, 179)(127, 160)(128, 183)(129, 180)(130, 178)(131, 189)(132, 181)(133, 155)(134, 151)(135, 187)(136, 177)(137, 185)(145, 188)(147, 152)(148, 158)(149, 184)(150, 182)(153, 190)(154, 161)(156, 159)(157, 186)(164, 169)(165, 168)(166, 167)(171, 173)
c: (8, 16)(9, 17)(12, 23)(13, 24)(18, 30)(19, 31)(20, 29)(21, 28)(25, 37)(26, 38)(27, 39)(32, 40)(34, 42)(46, 56)(66, 73)(68, 79)(69, 80)(75, 87)(76, 88)(77, 85)(81, 84)(82, 91)(83, 90)(89, 93)(104, 176)(105, 175)(112, 115)(113, 144)(114, 122)(127, 137)(133, 149)(136, 153)(155, 184)(160, 185)(162, 174)(177, 190)
d: (2, 5)(3, 19)(4, 26)(6, 31)(7, 9)(10, 38)(11, 13)(12, 16)(15, 17)(21, 50)(22, 24)(25, 30)(27, 29)(28, 59)(32, 64)(33, 55)(34, 36)(40, 70)(42, 44)(43, 47)(46, 48)(49, 51)(54, 82)(56, 58)(60, 62)(61, 89)(65, 91)(66, 85)(67, 69)(72, 93)(74, 76)(75, 79)(78, 80)(81, 83)(86, 88)(92, 96)(97, 123)(98, 146)(99, 177)(100, 152)(101, 155)(102, 145)(103, 158)(104, 157)(105, 156)(106, 137)(107, 182)(108, 135)(109, 136)(110, 151)(111, 159)(112, 154)(113, 148)(114, 183)(115, 181)(116, 129)(117, 127)(118, 133)(119, 124)(120, 186)(121, 191)(122, 188)(125, 162)(126, 172)(128, 171)(130, 176)(131, 175)(132, 173)(134, 174)(138, 150)(139, 147)(140, 153)(141, 149)(142, 189)(143, 178)(144, 179)(160, 169)(161, 170)(163, 185)(164, 192)(165, 184)(166, 180)(167, 190)(168, 187)
e: (3, 7)(4, 11)(6, 15)(8, 20)(9, 19)(10, 22)(12, 27)(13, 26)(16, 29)(17, 31)(21, 34)(23, 39)(24, 38)(28, 42)(32, 46)(33, 49)(35, 53)(36, 50)(40, 56)(41, 52)(43, 60)(44, 59)(45, 63)(47, 62)(48, 64)(51, 55)(54, 67)(57, 71)(58, 70)(61, 74)(65, 78)(66, 81)(69, 82)(72, 86)(73, 84)(76, 89)(77, 90)(80, 91)(83, 85)(88, 93)(97, 151)(98, 161)(99, 130)(100, 158)(101, 131)(102, 182)(103, 152)(104, 190)(105, 184)(106, 188)(107, 145)(108, 178)(109, 148)(110, 123)(111, 147)(112, 133)(113, 136)(114, 127)(115, 149)(116, 189)(117, 183)(118, 154)(119, 191)(120, 150)(121, 124)(122, 137)(125, 169)(126, 166)(128, 168)(129, 142)(132, 164)(134, 163)(135, 143)(138, 186)(139, 159)(140, 179)(141, 181)(144, 153)(146, 170)(155, 175)(156, 165)(157, 167)(160, 162)(171, 187)(172, 180)(173, 192)(174, 185)(176, 177)
f: (1, 2)(5, 14)(9, 13)(17, 24)(19, 26)(21, 32)(28, 40)(31, 38)(33, 45)(34, 46)(35, 43)(41, 55)(42, 56)(47, 57)(49, 63)(51, 52)(53, 60)(62, 71)(69, 76)(80, 88)(82, 89)(91, 93)(92, 95)(94, 96)(97, 119)(98, 164)(100, 166)(107, 168)(108, 138)(116, 139)(126, 158)(128, 145)(132, 161)(151, 191)(159, 189)(178, 186)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 69 ]
192
-1 110 123 151 97
-2 110 123 191 119
-3 110 134 146 106
-4 121 134 192 106
-5 121 124 151 97
-6 110 146 125 117
-7 188 123 170 163
-8 154 112 137 106
-9 122 161 97 185
-10 121 125 192 117
-11 188 124 173 163
-12 112 137 181 117
-13 132 122 119 185
-14 121 124 191 119
-15 123 169 170 183
-16 154 115 127 106
-17 114 160 161 97
-18 134 163 174 185
-19 137 151 174 98
-20 122 133 188 118
-21 155 112 128 108
-22 124 169 183 173
-23 115 181 127 117
-24 132 114 160 119
-25 125 169 174 185
-26 191 137 174 164
-27 122 133 183 141
-28 115 128 184 108
-29 188 114 149 118
-30 134 160 162 163
-31 127 151 162 98
-32 155 112 145 138
-33 102 146 128 164
-34 133 178 168 175
-35 111 135 159 108
-36 143 187 118 131
-37 125 169 160 162
-38 191 127 162 164
-39 114 149 183 141
-40 145 115 138 184
-41 192 171 128 164
-42 178 168 105 149
-43 111 189 135 138
-44 143 187 156 141
-45 145 102 146 98
-46 133 107 175 186
-47 159 150 108 142
-48 182 118 120 131
-49 132 168 170 182
-50 154 101 135 171
-51 187 161 107 173
-52 132 187 168 173
-53 143 178 147 139
-54 111 130 152 109
-55 145 192 171 98
-56 105 149 107 186
-57 189 138 150 142
-58 156 182 141 120
-59 165 135 181 171
-60 143 147 116 186
-61 180 130 109 142
-62 178 139 129 120
-63 170 182 161 107
-64 154 101 102 150
-65 111 157 140 152
-66 165 155 104 130
-67 99 103 147 148
-68 113 136 148 109
-69 177 113 158 139
-70 165 102 181 150
-71 116 129 120 186
-72 157 180 140 142
-73 165 176 184 130
-74 99 148 172 129
-75 113 179 136 140
-76 177 113 126 116
-77 155 101 157 104
-78 167 179 103 147
-79 144 148 109 153
-80 144 190 158 139
-81 99 156 190 175
-82 176 100 136 159
-83 177 167 105 131
-84 99 177 156 105
-85 176 101 157 184
-86 167 179 172 129
-87 144 179 140 153
-88 144 190 126 116
-89 176 166 189 136
-90 167 190 131 175
-91 100 104 159 153
-92 166 103 126 152
-93 166 189 104 153
-94 166 180 126 172
-95 100 103 158 152
-96 100 158 180 172
-97 1 5 17 9
-98 55 45 19 31
-99 67 81 84 74
-100 91 82 95 96
-101 77 50 85 64
-102 33 45 70 64
-103 67 78 92 95
-104 66 77 91 93
-105 56 83 84 42
-106 3 4 16 8
-107 56 46 51 63
-108 35 47 28 21
-109 68 79 61 54
-110 1 2 3 6
-111 35 43 54 65
-112 12 8 21 32
-113 68 69 75 76
-114 24 17 39 29
-115 23 16 28 40
-116 88 60 71 76
-117 12 23 6 10
-118 36 48 29 20
-119 2 13 24 14
-120 58 48 71 62
-121 14 4 5 10
-122 13 27 9 20
-123 1 2 15 7
-124 11 22 14 5
-125 25 37 6 10
-126 88 92 94 76
-127 23 16 38 31
-128 33 28 41 21
-129 71 62 74 86
-130 66 61 73 54
-131 90 36 48 83
-132 13 24 49 52
-133 34 46 27 20
-134 3 4 18 30
-135 35 59 50 43
-136 89 68 82 75
-137 12 26 8 19
-138 57 40 32 43
-139 69 80 62 53
-140 72 75 65 87
-141 44 58 27 39
-142 57 47 61 72
-143 44 36 60 53
-144 88 79 80 87
-145 55 45 40 32
-146 33 45 3 6
-147 67 78 60 53
-148 67 68 79 74
-149 56 39 29 42
-150 57 47 70 64
-151 1 5 19 31
-152 92 95 54 65
-153 79 91 93 87
-154 16 50 8 64
-155 66 77 21 32
-156 44 58 81 84
-157 77 72 85 65
-158 69 80 95 96
-159 35 47 91 82
-160 24 37 17 30
-161 17 51 63 9
-162 37 38 30 31
-163 11 7 18 30
-164 33 26 38 41
-165 66 59 70 73
-166 89 92 93 94
-167 78 90 83 86
-168 34 49 52 42
-169 22 25 15 37
-170 15 49 7 63
-171 55 59 50 41
-172 94 74 96 86
-173 11 22 51 52
-174 25 26 18 19
-175 34 46 90 81
-176 89 82 73 85
-177 69 83 84 76
-178 34 62 42 53
-179 78 75 86 87
-180 61 72 94 96
-181 12 23 59 70
-182 58 48 49 63
-183 22 15 27 39
-184 28 40 73 85
-185 13 25 18 9
-186 56 46 60 71
-187 44 36 51 52
-188 11 7 29 20
-189 89 57 93 43
-190 88 90 80 81
-191 2 14 26 38
-192 55 4 41 10
0

**************