C4graphGraph forms for C4 [ 192, 70 ] = PL(MBr(2,48;7))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 70 ] = PL(MBr(2,48;7)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {76, 108}, {77, 109}, {76, 109}, {74, 104}, {75, 105}, {75, 104}, {76, 105}, {75, 108}, {73, 97}, {80, 121}, {74, 97}, {80, 124}, {81, 125}, {73, 100}, {80, 125}, {74, 100}, {75, 101}, {74, 101}, {79, 124}, {78, 120}, {79, 121}, {79, 120}, {77, 116}, {78, 116}, {79, 117}, {78, 117}, {76, 112}, {77, 113}, {77, 112}, {78, 113}, {47, 111}, {54, 118}, {55, 119}, {46, 111}, {54, 119}, {55, 118}, {56, 122}, {40, 107}, {56, 123}, {40, 108}, {54, 114}, {54, 115}, {33, 103}, {53, 115}, {56, 126}, {57, 127}, {32, 103}, {53, 114}, {56, 127}, {57, 126}, {32, 104}, {33, 104}, {39, 108}, {39, 107}, {55, 123}, {55, 122}, {37, 117}, {50, 98}, {36, 117}, {50, 99}, {43, 122}, {36, 118}, {49, 99}, {43, 121}, {37, 118}, {49, 98}, {50, 102}, {51, 103}, {44, 121}, {50, 103}, {51, 102}, {44, 122}, {51, 107}, {51, 106}, {52, 110}, {53, 111}, {52, 111}, {53, 110}, {46, 112}, {52, 106}, {47, 112}, {52, 107}, {1, 97}, {2, 98}, {1, 98}, {2, 97}, {27, 127}, {15, 106}, {26, 127}, {15, 105}, {19, 123}, {20, 124}, {9, 101}, {30, 114}, {29, 113}, {8, 101}, {8, 102}, {9, 102}, {30, 113}, {29, 114}, {20, 123}, {19, 124}, {5, 116}, {6, 116}, {12, 120}, {6, 115}, {13, 120}, {5, 115}, {22, 110}, {16, 105}, {26, 99}, {23, 110}, {13, 119}, {25, 99}, {23, 109}, {16, 106}, {12, 119}, {22, 109}, {2, 126}, {3, 126}, {25, 100}, {3, 125}, {26, 100}, {2, 125}, {27, 155}, {28, 156}, {21, 151}, {34, 160}, {20, 151}, {35, 160}, {27, 156}, {28, 155}, {7, 143}, {38, 174}, {10, 130}, {9, 129}, {6, 143}, {42, 163}, {39, 174}, {32, 169}, {32, 170}, {41, 163}, {39, 173}, {9, 130}, {38, 173}, {10, 129}, {20, 152}, {49, 189}, {21, 152}, {41, 164}, {42, 164}, {30, 142}, {24, 137}, {31, 142}, {24, 138}, {31, 141}, {30, 141}, {10, 158}, {43, 191}, {17, 133}, {11, 158}, {42, 191}, {16, 133}, {6, 144}, {16, 134}, {11, 157}, {7, 144}, {48, 167}, {17, 134}, {10, 157}, {35, 187}, {48, 168}, {36, 188}, {3, 154}, {13, 148}, {3, 153}, {26, 128}, {14, 148}, {27, 128}, {45, 177}, {46, 178}, {4, 153}, {23, 138}, {14, 147}, {4, 154}, {23, 137}, {13, 147}, {35, 188}, {46, 177}, {45, 178}, {36, 187}, {15, 175}, {96, 192}, {40, 136}, {14, 175}, {41, 136}, {34, 131}, {21, 180}, {22, 180}, {33, 131}, {8, 171}, {47, 140}, {8, 172}, {47, 139}, {28, 184}, {63, 155}, {22, 179}, {33, 132}, {29, 184}, {63, 154}, {1, 167}, {34, 132}, {21, 179}, {62, 150}, {63, 151}, {1, 168}, {62, 151}, {63, 150}, {29, 183}, {7, 172}, {28, 183}, {7, 171}, {18, 190}, {62, 146}, {19, 190}, {62, 147}, {19, 189}, {41, 135}, {61, 147}, {18, 189}, {40, 135}, {61, 146}, {5, 181}, {18, 162}, {17, 161}, {59, 139}, {4, 181}, {11, 186}, {59, 138}, {4, 182}, {11, 185}, {60, 142}, {61, 143}, {5, 182}, {18, 161}, {17, 162}, {60, 143}, {61, 142}, {37, 145}, {38, 146}, {12, 185}, {31, 170}, {12, 186}, {31, 169}, {60, 138}, {37, 146}, {38, 145}, {60, 139}, {45, 149}, {58, 130}, {44, 149}, {58, 131}, {44, 150}, {57, 131}, {45, 150}, {48, 139}, {57, 130}, {25, 165}, {48, 140}, {35, 159}, {58, 134}, {59, 135}, {24, 165}, {34, 159}, {58, 135}, {59, 134}, {14, 176}, {24, 166}, {15, 176}, {25, 166}, {85, 148}, {88, 153}, {86, 148}, {87, 149}, {86, 149}, {84, 144}, {89, 157}, {88, 156}, {85, 145}, {85, 144}, {88, 157}, {86, 145}, {87, 156}, {86, 152}, {87, 153}, {87, 152}, {80, 128}, {81, 129}, {81, 128}, {82, 129}, {81, 132}, {82, 132}, {83, 133}, {82, 133}, {84, 140}, {85, 141}, {84, 141}, {96, 185}, {64, 154}, {82, 136}, {83, 137}, {64, 155}, {83, 136}, {96, 188}, {84, 137}, {96, 189}, {64, 158}, {65, 159}, {64, 159}, {65, 158}, {83, 140}, {66, 162}, {66, 163}, {65, 163}, {65, 162}, {95, 188}, {66, 166}, {67, 167}, {66, 167}, {67, 166}, {94, 184}, {95, 185}, {95, 184}, {67, 171}, {67, 170}, {93, 180}, {42, 192}, {95, 181}, {94, 180}, {68, 174}, {69, 175}, {43, 192}, {94, 181}, {68, 175}, {69, 174}, {92, 176}, {93, 177}, {93, 176}, {68, 170}, {68, 171}, {94, 177}, {70, 182}, {93, 173}, {92, 172}, {71, 183}, {49, 192}, {92, 173}, {70, 183}, {71, 182}, {72, 186}, {91, 169}, {90, 168}, {72, 187}, {91, 168}, {70, 178}, {70, 179}, {92, 169}, {69, 179}, {72, 190}, {73, 191}, {69, 178}, {91, 172}, {72, 191}, {73, 190}, {88, 160}, {89, 161}, {89, 160}, {90, 161}, {71, 187}, {71, 186}, {89, 164}, {90, 164}, {91, 165}, {90, 165} }>;

(II) A more general form is to represent the graph as the orbit of {76, 108} under the group generated by the following permutations:

a: (49, 73)(50, 74)(51, 75)(52, 76)(53, 77)(54, 78)(55, 79)(56, 80)(57, 81)(58, 82)(59, 83)(60, 84)(61, 85)(62, 86)(63, 87)(64, 88)(65, 89)(66, 90)(67, 91)(68, 92)(69, 93)(70, 94)(71, 95)(72, 96)(97, 98)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(109, 110)(111, 112)(113, 114)(115, 116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 56, 63, 70, 77, 84, 91, 50, 57, 64, 71, 78, 85, 92, 51, 58, 65, 72, 79, 86, 93, 52, 59, 66, 73, 80, 87, 94, 53, 60, 67, 74, 81, 88, 95, 54, 61, 68, 75, 82, 89, 96, 55, 62, 69, 76, 83, 90)(97, 125, 153, 181, 115, 143, 171, 101, 129, 157, 185, 119, 147, 175, 105, 133, 161, 189, 123, 151, 179, 109, 137, 165, 99, 127, 155, 183, 113, 141, 169, 103, 131, 159, 187, 117, 145, 173, 107, 135, 163, 191, 121, 149, 177, 111, 139, 167)(98, 126, 154, 182, 116, 144, 172, 102, 130, 158, 186, 120, 148, 176, 106, 134, 162, 190, 124, 152, 180, 110, 138, 166, 100, 128, 156, 184, 114, 142, 170, 104, 132, 160, 188, 118, 146, 174, 108, 136, 164, 192, 122, 150, 178, 112, 140, 168)
c: (2, 48)(3, 47)(4, 46)(5, 45)(6, 44)(7, 43)(8, 42)(9, 41)(10, 40)(11, 39)(12, 38)(13, 37)(14, 36)(15, 35)(16, 34)(17, 33)(18, 32)(19, 31)(20, 30)(21, 29)(22, 28)(23, 27)(24, 26)(49, 67)(50, 66)(51, 65)(52, 64)(53, 63)(54, 62)(55, 61)(56, 60)(57, 59)(68, 96)(69, 95)(70, 94)(71, 93)(72, 92)(73, 91)(74, 90)(75, 89)(76, 88)(77, 87)(78, 86)(79, 85)(80, 84)(81, 83)(97, 168)(98, 167)(99, 166)(100, 165)(101, 164)(102, 163)(103, 162)(104, 161)(105, 160)(106, 159)(107, 158)(108, 157)(109, 156)(110, 155)(111, 154)(112, 153)(113, 152)(114, 151)(115, 150)(116, 149)(117, 148)(118, 147)(119, 146)(120, 145)(121, 144)(122, 143)(123, 142)(124, 141)(125, 140)(126, 139)(127, 138)(128, 137)(129, 136)(130, 135)(131, 134)(132, 133)(169, 190)(170, 189)(171, 192)(172, 191)(173, 186)(174, 185)(175, 188)(176, 187)(177, 182)(178, 181)(179, 184)(180, 183)
d: (1, 49)(2, 50)(3, 51)(4, 52)(5, 53)(6, 54)(7, 55)(8, 56)(9, 57)(10, 58)(11, 59)(12, 60)(13, 61)(14, 62)(15, 63)(16, 64)(17, 65)(18, 66)(19, 67)(20, 68)(21, 69)(22, 70)(23, 71)(24, 72)(25, 73)(26, 74)(27, 75)(28, 76)(29, 77)(30, 78)(31, 79)(32, 80)(33, 81)(34, 82)(35, 83)(36, 84)(37, 85)(38, 86)(39, 87)(40, 88)(41, 89)(42, 90)(43, 91)(44, 92)(45, 93)(46, 94)(47, 95)(48, 96)(97, 99)(101, 127)(102, 126)(103, 125)(104, 128)(105, 155)(106, 154)(107, 153)(108, 156)(109, 183)(110, 182)(111, 181)(112, 184)(114, 116)(117, 141)(118, 144)(119, 143)(120, 142)(121, 169)(122, 172)(123, 171)(124, 170)(129, 131)(133, 159)(134, 158)(135, 157)(136, 160)(137, 187)(138, 186)(139, 185)(140, 188)(146, 148)(149, 173)(150, 176)(151, 175)(152, 174)(161, 163)(165, 191)(166, 190)(167, 189)(168, 192)(178, 180)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 70 ]
192
-1 167 168 97 98
-2 125 126 97 98
-3 154 125 126 153
-4 154 181 182 153
-5 115 181 116 182
-6 143 144 115 116
-7 143 144 171 172
-8 101 102 171 172
-9 101 102 129 130
-10 157 158 129 130
-11 157 158 185 186
-12 119 185 120 186
-13 147 148 119 120
-14 176 147 148 175
-15 176 105 106 175
-16 133 134 105 106
-17 133 134 161 162
-18 189 190 161 162
-19 123 189 124 190
-20 123 124 151 152
-21 179 180 151 152
-22 110 179 180 109
-23 110 137 138 109
-24 165 166 137 138
-25 99 165 100 166
-26 99 100 127 128
-27 155 156 127 128
-28 155 156 183 184
-29 113 114 183 184
-30 113 114 141 142
-31 169 170 141 142
-32 103 169 104 170
-33 132 103 104 131
-34 132 159 160 131
-35 187 188 159 160
-36 187 188 117 118
-37 145 146 117 118
-38 145 146 173 174
-39 107 173 108 174
-40 135 136 107 108
-41 135 136 163 164
-42 191 192 163 164
-43 121 122 191 192
-44 121 122 149 150
-45 177 178 149 150
-46 111 177 112 178
-47 111 112 139 140
-48 167 168 139 140
-49 99 189 192 98
-50 99 102 103 98
-51 102 103 106 107
-52 110 111 106 107
-53 110 111 114 115
-54 114 115 118 119
-55 122 123 118 119
-56 122 123 126 127
-57 126 127 130 131
-58 134 135 130 131
-59 134 135 138 139
-60 143 138 139 142
-61 143 146 147 142
-62 146 147 150 151
-63 154 155 150 151
-64 154 155 158 159
-65 158 159 162 163
-66 166 167 162 163
-67 166 167 170 171
-68 170 171 174 175
-69 178 179 174 175
-70 178 179 182 183
-71 187 182 183 186
-72 187 190 191 186
-73 100 190 191 97
-74 100 101 104 97
-75 101 104 105 108
-76 112 105 108 109
-77 112 113 116 109
-78 113 116 117 120
-79 121 124 117 120
-80 121 124 125 128
-81 132 125 128 129
-82 132 133 136 129
-83 133 136 137 140
-84 144 137 140 141
-85 144 145 148 141
-86 145 148 149 152
-87 156 149 152 153
-88 156 157 160 153
-89 157 160 161 164
-90 165 168 161 164
-91 165 168 169 172
-92 176 169 172 173
-93 176 177 180 173
-94 177 180 181 184
-95 188 181 184 185
-96 188 189 192 185
-97 1 2 73 74
-98 1 2 49 50
-99 25 26 49 50
-100 25 26 73 74
-101 8 74 9 75
-102 50 51 8 9
-103 33 50 51 32
-104 33 74 75 32
-105 15 16 75 76
-106 15 16 51 52
-107 39 40 51 52
-108 39 40 75 76
-109 22 77 23 76
-110 22 23 52 53
-111 46 47 52 53
-112 77 46 47 76
-113 77 78 29 30
-114 29 30 53 54
-115 5 6 53 54
-116 77 78 5 6
-117 78 79 36 37
-118 55 36 37 54
-119 55 12 13 54
-120 12 78 13 79
-121 44 79 80 43
-122 44 55 56 43
-123 55 56 19 20
-124 79 80 19 20
-125 2 3 80 81
-126 56 2 57 3
-127 56 57 26 27
-128 80 26 81 27
-129 81 82 9 10
-130 57 58 9 10
-131 33 34 57 58
-132 33 34 81 82
-133 16 82 17 83
-134 58 59 16 17
-135 58 59 40 41
-136 82 83 40 41
-137 23 24 83 84
-138 23 24 59 60
-139 47 48 59 60
-140 47 48 83 84
-141 84 30 85 31
-142 60 61 30 31
-143 60 6 61 7
-144 6 7 84 85
-145 37 38 85 86
-146 37 38 61 62
-147 13 14 61 62
-148 13 14 85 86
-149 44 45 86 87
-150 44 45 62 63
-151 62 63 20 21
-152 20 86 21 87
-153 88 3 4 87
-154 3 4 63 64
-155 27 28 63 64
-156 88 27 28 87
-157 11 88 89 10
-158 11 64 10 65
-159 34 35 64 65
-160 88 34 89 35
-161 89 90 17 18
-162 66 17 18 65
-163 66 41 42 65
-164 89 90 41 42
-165 24 90 25 91
-166 66 67 24 25
-167 66 1 67 48
-168 1 90 91 48
-169 91 92 31 32
-170 67 68 31 32
-171 67 68 7 8
-172 91 92 7 8
-173 92 38 93 39
-174 68 69 38 39
-175 68 14 69 15
-176 14 15 92 93
-177 45 46 93 94
-178 45 46 69 70
-179 22 69 70 21
-180 22 93 94 21
-181 4 5 94 95
-182 4 70 5 71
-183 70 71 28 29
-184 28 94 29 95
-185 11 12 95 96
-186 11 12 71 72
-187 35 36 71 72
-188 35 36 95 96
-189 49 18 19 96
-190 72 18 73 19
-191 72 73 42 43
-192 49 96 42 43
0

**************