C4graphGraph forms for C4 [ 192, 73 ] = PL(Proj2LR'(3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 73 ] = PL(Proj2LR'(3)).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {30, 31}, {188, 189}, {132, 133}, {120, 121}, {78, 79}, {56, 58}, {73, 75}, {97, 98}, {101, 102}, {42, 46}, {123, 127}, {73, 77}, {35, 38}, {104, 109}, {113, 119}, {24, 31}, {147, 148}, {64, 73}, {131, 138}, {100, 110}, {164, 174}, {50, 57}, {149, 158}, {166, 171}, {101, 107}, {119, 121}, {114, 125}, {117, 122}, {4, 21}, {172, 189}, {130, 147}, {7, 22}, {34, 49}, {172, 191}, {140, 159}, {96, 115}, {15, 27}, {47, 58}, {65, 84}, {74, 95}, {64, 86}, {107, 125}, {108, 123}, {40, 48}, {76, 84}, {77, 84}, {138, 144}, {1, 26}, {140, 151}, {78, 85}, {42, 55}, {137, 148}, {6, 24}, {18, 50}, {134, 166}, {21, 53}, {77, 108}, {17, 51}, {74, 105}, {131, 160}, {141, 169}, {3, 38}, {94, 123}, {27, 61}, {136, 174}, {19, 52}, {159, 184}, {156, 187}, {75, 108}, {71, 111}, {158, 182}, {154, 178}, {134, 175}, {152, 177}, {12, 38}, {128, 170}, {20, 63}, {1, 44}, {152, 181}, {89, 116}, {84, 121}, {25, 52}, {131, 173}, {7, 40}, {137, 166}, {129, 174}, {66, 114}, {70, 118}, {76, 124}, {82, 99}, {25, 43}, {72, 122}, {23, 36}, {85, 102}, {19, 38}, {128, 181}, {28, 41}, {72, 125}, {140, 186}, {153, 175}, {69, 114}, {146, 165}, {12, 52}, {154, 162}, {93, 101}, {90, 98}, {14, 55}, {22, 47}, {4, 62}, {92, 102}, {129, 189}, {157, 161}, {136, 180}, {16, 45}, {82, 111}, {6, 56}, {147, 173}, {129, 191}, {143, 176}, {23, 87}, {30, 94}, {46, 111}, {9, 75}, {32, 98}, {35, 97}, {6, 66}, {11, 79}, {17, 85}, {35, 103}, {36, 96}, {58, 126}, {133, 192}, {54, 112}, {29, 90}, {9, 65}, {21, 93}, {61, 117}, {10, 67}, {15, 70}, {61, 119}, {37, 110}, {63, 116}, {20, 89}, {11, 69}, {44, 99}, {2, 83}, {36, 118}, {40, 122}, {56, 107}, {8, 92}, {51, 103}, {55, 99}, {19, 70}, {12, 91}, {4, 92}, {1, 88}, {39, 126}, {40, 113}, {41, 115}, {10, 81}, {60, 103}, {14, 82}, {33, 125}, {157, 192}, {9, 105}, {29, 124}, {45, 76}, {2, 96}, {6, 100}, {45, 79}, {50, 80}, {60, 94}, {33, 66}, {3, 103}, {62, 91}, {49, 87}, {16, 119}, {63, 88}, {16, 120}, {53, 92}, {14, 100}, {27, 113}, {19, 120}, {16, 124}, {52, 88}, {8, 101}, {27, 118}, {41, 68}, {55, 90}, {43, 69}, {37, 74}, {56, 72}, {33, 83}, {2, 118}, {35, 87}, {46, 90}, {61, 72}, {59, 77}, {58, 66}, {20, 109}, {47, 86}, {59, 65}, {36, 95}, {49, 74}, {15, 115}, {22, 106}, {34, 95}, {21, 107}, {18, 146}, {20, 150}, {60, 190}, {48, 179}, {48, 180}, {5, 128}, {29, 152}, {13, 139}, {25, 158}, {26, 157}, {60, 180}, {8, 129}, {18, 155}, {24, 146}, {34, 168}, {57, 179}, {28, 151}, {51, 190}, {54, 184}, {57, 183}, {30, 145}, {39, 168}, {31, 143}, {13, 156}, {32, 177}, {23, 133}, {26, 137}, {48, 163}, {1, 149}, {54, 163}, {28, 138}, {42, 188}, {33, 182}, {59, 172}, {53, 173}, {17, 136}, {89, 192}, {13, 150}, {50, 169}, {5, 153}, {11, 151}, {39, 187}, {42, 182}, {39, 186}, {47, 178}, {51, 174}, {12, 147}, {18, 141}, {59, 164}, {3, 162}, {53, 148}, {5, 167}, {11, 168}, {37, 134}, {29, 185}, {32, 132}, {62, 155}, {9, 175}, {28, 186}, {25, 190}, {23, 191}, {13, 167}, {44, 134}, {45, 135}, {63, 149}, {14, 165}, {37, 142}, {7, 171}, {8, 164}, {43, 135}, {62, 146}, {4, 169}, {22, 187}, {30, 176}, {3, 178}, {26, 171}, {44, 157}, {5, 183}, {7, 180}, {49, 133}, {34, 151}, {10, 188}, {15, 183}, {41, 144}, {57, 128}, {24, 162}, {31, 165}, {17, 170}, {54, 141}, {10, 182}, {2, 188}, {43, 149}, {46, 144}, {75, 139}, {79, 142}, {121, 184}, {110, 175}, {106, 171}, {82, 144}, {86, 148}, {64, 131}, {70, 130}, {116, 176}, {99, 166}, {109, 168}, {100, 162}, {81, 150}, {67, 139}, {64, 137}, {106, 163}, {78, 135}, {80, 153}, {65, 139}, {71, 141}, {69, 142}, {110, 165}, {71, 140}, {102, 170}, {126, 178}, {81, 156}, {124, 177}, {87, 154}, {85, 152}, {83, 158}, {97, 177}, {115, 160}, {112, 164}, {117, 161}, {94, 136}, {96, 183}, {109, 186}, {104, 176}, {91, 130}, {106, 179}, {93, 132}, {98, 185}, {112, 172}, {127, 160}, {32, 192}, {113, 145}, {95, 191}, {126, 156}, {80, 179}, {108, 143}, {67, 167}, {68, 160}, {71, 163}, {73, 173}, {88, 190}, {105, 142}, {81, 185}, {123, 145}, {122, 145}, {86, 187}, {68, 170}, {83, 189}, {112, 159}, {116, 155}, {105, 153}, {127, 143}, {111, 159}, {68, 181}, {117, 132}, {91, 169}, {104, 155}, {76, 184}, {114, 135}, {127, 138}, {80, 167}, {89, 161}, {67, 185}, {120, 130}, {78, 181}, {97, 154}, {93, 161}, {104, 150} }>;

(II) A more general form is to represent the graph as the orbit of {30, 31} under the group generated by the following permutations:

a: (1, 2, 91, 153, 6, 45, 40, 111)(3, 181, 30, 151, 161, 172, 148, 67)(4, 9, 58, 124, 180, 144, 63, 36)(5, 24, 79, 122, 159, 26, 188, 12)(7, 46, 88, 96, 62, 105, 56, 76)(8, 73, 156, 97, 17, 127, 109, 133)(10, 38, 128, 31, 11, 117, 112, 137)(13, 154, 85, 123, 186, 192, 129, 173)(14, 43, 27, 141, 134, 33, 120, 179)(15, 18, 37, 125, 121, 106, 55, 25)(16, 48, 82, 149, 118, 169, 175, 66)(19, 57, 165, 69, 61, 54, 166, 182)(20, 23, 92, 75, 126, 177, 136, 138)(21, 65, 47, 29, 60, 41, 116, 95)(22, 90, 190, 115, 155, 74, 107, 84)(28, 89, 191, 53, 139, 178, 152, 94)(32, 174, 131, 150, 87, 102, 108, 39)(34, 93, 59, 86, 185, 103, 68, 176)(35, 170, 143, 168, 132, 164, 64, 81)(42, 52, 183, 146, 142, 72, 184, 171)(44, 83, 130, 80, 100, 135, 113, 71)(49, 101, 77, 187, 98, 51, 160, 104)(50, 110, 114, 119, 163, 99, 158, 70)(78, 145, 140, 157, 189, 147, 167, 162)
b: (2, 70)(3, 66)(4, 185)(5, 57)(6, 178)(7, 37)(8, 124)(9, 163)(10, 91)(11, 94)(12, 182)(13, 18)(14, 86)(15, 96)(16, 129)(17, 78)(19, 83)(20, 116)(21, 98)(22, 110)(23, 61)(24, 126)(26, 44)(27, 36)(28, 127)(29, 92)(30, 168)(31, 39)(32, 93)(33, 38)(34, 145)(35, 125)(40, 74)(41, 160)(42, 147)(43, 190)(45, 174)(46, 173)(47, 100)(48, 105)(49, 122)(50, 167)(51, 135)(52, 158)(53, 90)(54, 65)(55, 148)(56, 154)(58, 162)(59, 184)(60, 69)(62, 81)(64, 82)(67, 169)(71, 75)(72, 87)(73, 111)(76, 164)(77, 159)(79, 136)(84, 112)(88, 149)(95, 113)(97, 107)(99, 137)(101, 177)(102, 152)(103, 114)(106, 175)(108, 140)(109, 176)(117, 133)(119, 191)(120, 189)(121, 172)(123, 151)(130, 188)(131, 144)(134, 171)(139, 141)(142, 180)(143, 186)(146, 156)(150, 155)(153, 179)(161, 192)(165, 187)(170, 181)
c: (2, 9)(3, 47)(5, 172)(7, 60)(8, 50)(10, 74)(11, 90)(12, 148)(13, 23)(14, 114)(15, 77)(16, 138)(17, 163)(18, 101)(19, 64)(20, 192)(21, 62)(22, 103)(24, 56)(25, 166)(26, 88)(27, 108)(28, 124)(29, 151)(30, 122)(31, 72)(32, 109)(33, 110)(34, 185)(35, 187)(36, 139)(37, 182)(38, 86)(39, 97)(40, 94)(41, 76)(42, 142)(43, 99)(44, 149)(45, 144)(46, 79)(48, 136)(49, 81)(51, 106)(52, 137)(53, 91)(54, 170)(55, 69)(57, 164)(58, 162)(59, 183)(61, 143)(63, 157)(65, 96)(66, 100)(67, 95)(68, 184)(70, 73)(71, 85)(75, 118)(78, 111)(80, 129)(82, 135)(83, 175)(84, 115)(87, 156)(92, 169)(93, 155)(98, 168)(102, 141)(104, 132)(105, 188)(107, 146)(112, 128)(113, 123)(116, 161)(117, 176)(119, 127)(120, 131)(121, 160)(125, 165)(126, 154)(130, 173)(133, 150)(134, 158)(140, 152)(153, 189)(159, 181)(167, 191)(171, 190)(174, 179)(177, 186)
d: (2, 45)(5, 159)(8, 102)(9, 144)(10, 11)(13, 186)(14, 110)(15, 121)(16, 118)(17, 174)(23, 177)(27, 119)(28, 139)(29, 95)(32, 133)(33, 114)(34, 185)(36, 124)(37, 55)(39, 156)(41, 65)(42, 142)(43, 158)(46, 105)(49, 98)(50, 141)(54, 57)(59, 68)(67, 151)(69, 182)(70, 120)(71, 80)(73, 131)(74, 90)(75, 138)(76, 96)(77, 160)(78, 189)(79, 188)(81, 168)(82, 175)(83, 135)(84, 115)(85, 129)(87, 97)(99, 134)(108, 127)(109, 150)(111, 153)(112, 128)(140, 167)(152, 191)(163, 179)(164, 170)(172, 181)(183, 184)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 73 ]
192
-1 44 88 26 149
-2 188 83 96 118
-3 178 103 38 162
-4 92 169 62 21
-5 167 128 183 153
-6 66 56 100 24
-7 22 180 171 40
-8 101 92 129 164
-9 105 75 65 175
-10 67 188 81 182
-11 79 69 168 151
-12 91 147 38 52
-13 156 167 139 150
-14 55 165 100 82
-15 70 27 115 183
-16 45 124 119 120
-17 136 170 51 85
-18 155 146 50 141
-19 70 38 52 120
-20 89 150 63 109
-21 4 93 107 53
-22 187 47 7 106
-23 133 36 191 87
-24 146 6 162 31
-25 190 158 52 43
-26 1 157 137 171
-27 113 15 61 118
-28 138 41 151 186
-29 90 124 152 185
-30 176 145 94 31
-31 143 165 24 30
-32 132 177 192 98
-33 66 125 83 182
-34 168 49 95 151
-35 103 38 97 87
-36 23 95 96 118
-37 110 134 74 142
-38 12 35 3 19
-39 187 168 126 186
-40 122 113 48 7
-41 144 68 115 28
-42 55 188 46 182
-43 25 69 135 149
-44 99 1 134 157
-45 79 135 16 76
-46 111 144 90 42
-47 22 178 58 86
-48 179 180 40 163
-49 34 133 74 87
-50 57 80 169 18
-51 190 103 17 174
-52 88 12 25 19
-53 92 148 173 21
-54 112 184 141 163
-55 99 90 14 42
-56 58 6 72 107
-57 179 50 128 183
-58 66 56 47 126
-59 77 172 65 164
-60 190 103 180 94
-61 27 72 117 119
-62 155 91 146 4
-63 88 116 149 20
-64 137 73 86 131
-65 59 84 139 9
-66 33 58 114 6
-67 167 139 185 10
-68 170 181 160 41
-69 11 114 43 142
-70 15 19 118 130
-71 111 140 141 163
-72 56 122 125 61
-73 77 173 64 75
-74 37 49 105 95
-75 73 139 9 108
-76 45 124 84 184
-77 59 73 84 108
-78 79 135 181 85
-79 11 45 78 142
-80 167 179 50 153
-81 156 150 185 10
-82 99 111 144 14
-83 33 2 189 158
-84 77 121 65 76
-85 78 102 17 152
-86 187 47 148 64
-87 154 23 35 49
-88 1 190 52 63
-89 192 116 161 20
-90 55 46 29 98
-91 12 169 62 130
-92 102 4 8 53
-93 132 101 161 21
-94 123 136 60 30
-95 34 36 191 74
-96 2 36 115 183
-97 154 177 35 98
-98 90 97 185 32
-99 44 55 166 82
-100 110 14 6 162
-101 102 93 8 107
-102 101 92 170 85
-103 35 3 60 51
-104 176 155 150 109
-105 74 9 142 153
-106 22 179 171 163
-107 56 101 125 21
-108 77 143 123 75
-109 168 104 20 186
-110 165 100 37 175
-111 46 71 82 159
-112 159 172 54 164
-113 145 27 40 119
-114 66 69 135 125
-115 15 160 41 96
-116 176 89 155 63
-117 132 122 61 161
-118 2 36 70 27
-119 121 113 16 61
-120 121 16 19 130
-121 84 184 119 120
-122 145 72 40 117
-123 145 94 127 108
-124 177 16 29 76
-125 33 114 72 107
-126 156 178 58 39
-127 143 123 138 160
-128 57 5 170 181
-129 189 191 8 174
-130 91 70 147 120
-131 138 160 173 64
-132 133 93 117 32
-133 132 23 49 192
-134 44 166 37 175
-135 45 78 114 43
-136 180 17 94 174
-137 166 26 148 64
-138 144 28 127 131
-139 67 13 75 65
-140 71 159 151 186
-141 169 71 18 54
-142 79 69 37 105
-143 176 127 31 108
-144 46 82 138 41
-145 122 123 113 30
-146 165 24 18 62
-147 12 148 173 130
-148 147 137 53 86
-149 1 158 63 43
-150 13 81 104 20
-151 11 34 28 140
-152 177 181 29 85
-153 80 5 105 175
-154 178 162 97 87
-155 104 116 18 62
-156 187 13 81 126
-157 44 26 192 161
-158 25 83 149 182
-159 111 112 140 184
-160 68 115 127 131
-161 89 157 93 117
-162 154 100 24 3
-163 48 71 106 54
-164 112 59 8 174
-165 110 14 146 31
-166 99 134 137 171
-167 67 13 80 5
-168 11 34 39 109
-169 91 4 50 141
-170 68 102 17 128
-171 166 26 7 106
-172 112 189 59 191
-173 147 73 53 131
-174 136 51 129 164
-175 110 134 9 153
-176 143 104 116 30
-177 124 97 152 32
-178 154 3 47 126
-179 57 80 48 106
-180 48 136 60 7
-181 78 68 128 152
-182 33 158 42 10
-183 57 15 5 96
-184 121 159 54 76
-185 67 81 29 98
-186 28 39 140 109
-187 22 156 39 86
-188 2 189 42 10
-189 188 83 172 129
-190 88 25 60 51
-191 23 95 172 129
-192 89 133 157 32
0

**************