C4graphGraph forms for C4 [ 192, 84 ] = UG(ATD[192,32])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 84 ] = UG(ATD[192,32]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {62, 63}, {162, 163}, {126, 127}, {140, 141}, {24, 26}, {177, 179}, {33, 35}, {105, 107}, {1, 2}, {189, 190}, {185, 186}, {153, 154}, {64, 67}, {97, 98}, {1, 5}, {59, 63}, {3, 7}, {2, 6}, {144, 149}, {18, 20}, {176, 182}, {146, 148}, {40, 47}, {171, 172}, {99, 100}, {130, 133}, {82, 90}, {86, 95}, {182, 191}, {151, 158}, {55, 61}, {181, 191}, {128, 138}, {4, 15}, {147, 152}, {4, 8}, {165, 169}, {163, 175}, {145, 157}, {3, 14}, {148, 153}, {69, 72}, {68, 73}, {178, 188}, {2, 13}, {177, 190}, {84, 91}, {67, 83}, {79, 94}, {104, 121}, {139, 154}, {37, 55}, {167, 181}, {109, 127}, {70, 85}, {140, 159}, {9, 29}, {111, 123}, {5, 16}, {172, 185}, {7, 18}, {137, 156}, {173, 187}, {6, 17}, {170, 189}, {70, 81}, {6, 30}, {161, 185}, {66, 90}, {107, 115}, {131, 155}, {44, 53}, {100, 126}, {174, 180}, {104, 114}, {8, 19}, {167, 188}, {160, 187}, {43, 48}, {12, 23}, {98, 121}, {106, 113}, {12, 16}, {171, 183}, {168, 180}, {161, 189}, {45, 49}, {108, 112}, {9, 20}, {175, 178}, {174, 179}, {173, 176}, {166, 187}, {11, 22}, {102, 120}, {132, 154}, {10, 21}, {165, 186}, {41, 54}, {142, 145}, {64, 96}, {134, 167}, {136, 169}, {27, 56}, {151, 180}, {128, 163}, {137, 170}, {31, 59}, {156, 184}, {5, 32}, {81, 116}, {25, 60}, {7, 34}, {129, 164}, {131, 166}, {28, 58}, {158, 184}, {147, 181}, {146, 180}, {83, 117}, {143, 169}, {6, 33}, {30, 57}, {26, 61}, {15, 40}, {130, 165}, {24, 48}, {25, 49}, {14, 39}, {31, 54}, {29, 52}, {27, 50}, {142, 164}, {157, 183}, {156, 182}, {8, 35}, {30, 53}, {13, 38}, {94, 117}, {19, 63}, {155, 183}, {10, 36}, {80, 126}, {78, 96}, {11, 37}, {81, 127}, {17, 62}, {152, 183}, {28, 51}, {88, 119}, {89, 118}, {135, 168}, {136, 167}, {141, 162}, {71, 119}, {68, 117}, {76, 125}, {74, 120}, {79, 125}, {78, 124}, {75, 121}, {69, 118}, {149, 166}, {130, 177}, {72, 124}, {143, 187}, {12, 57}, {150, 163}, {65, 116}, {19, 38}, {134, 179}, {24, 46}, {77, 123}, {76, 122}, {31, 40}, {75, 124}, {67, 116}, {133, 178}, {21, 45}, {23, 47}, {22, 46}, {16, 41}, {18, 43}, {29, 39}, {17, 42}, {150, 170}, {19, 44}, {41, 104}, {45, 108}, {43, 106}, {20, 86}, {32, 99}, {51, 112}, {42, 105}, {36, 103}, {26, 95}, {54, 115}, {52, 113}, {35, 102}, {33, 100}, {39, 97}, {34, 101}, {53, 114}, {44, 107}, {37, 98}, {50, 122}, {3, 73}, {11, 65}, {13, 65}, {14, 66}, {15, 64}, {20, 70}, {22, 68}, {21, 71}, {16, 67}, {17, 68}, {18, 69}, {51, 106}, {34, 126}, {37, 120}, {52, 105}, {50, 111}, {48, 109}, {22, 72}, {23, 73}, {49, 110}, {42, 74}, {56, 88}, {60, 93}, {62, 95}, {40, 74}, {46, 76}, {56, 91}, {61, 94}, {47, 75}, {3, 102}, {50, 87}, {58, 92}, {38, 78}, {39, 79}, {9, 96}, {36, 77}, {32, 74}, {33, 75}, {51, 88}, {7, 107}, {52, 89}, {58, 87}, {55, 90}, {34, 76}, {55, 89}, {24, 104}, {60, 77}, {61, 78}, {27, 109}, {38, 80}, {11, 115}, {184, 192}, {26, 99}, {47, 86}, {45, 84}, {43, 82}, {41, 80}, {29, 100}, {28, 101}, {14, 116}, {9, 114}, {46, 85}, {42, 81}, {10, 113}, {188, 192}, {44, 83}, {21, 148}, {65, 192}, {31, 158}, {62, 188}, {54, 181}, {28, 153}, {4, 143}, {63, 176}, {53, 165}, {59, 171}, {25, 139}, {57, 173}, {25, 142}, {27, 140}, {1, 152}, {10, 144}, {8, 147}, {35, 184}, {32, 189}, {12, 172}, {23, 177}, {56, 145}, {4, 174}, {5, 169}, {59, 150}, {1, 175}, {57, 151}, {36, 138}, {58, 149}, {2, 179}, {60, 141}, {48, 129}, {114, 192}, {13, 185}, {30, 170}, {49, 135}, {15, 178}, {82, 146}, {108, 172}, {85, 148}, {92, 157}, {101, 164}, {111, 174}, {110, 173}, {77, 136}, {93, 152}, {66, 132}, {84, 147}, {94, 153}, {69, 141}, {71, 143}, {70, 142}, {92, 151}, {123, 176}, {103, 171}, {91, 150}, {115, 190}, {66, 140}, {90, 149}, {93, 146}, {103, 168}, {112, 160}, {82, 128}, {83, 129}, {86, 132}, {87, 133}, {80, 132}, {92, 136}, {93, 137}, {125, 168}, {84, 130}, {85, 131}, {118, 160}, {119, 161}, {72, 144}, {124, 164}, {122, 160}, {123, 161}, {99, 191}, {102, 186}, {79, 145}, {87, 137}, {88, 134}, {89, 135}, {96, 190}, {112, 175}, {125, 162}, {97, 131}, {103, 133}, {71, 162}, {95, 186}, {121, 159}, {110, 134}, {98, 139}, {119, 158}, {109, 135}, {117, 159}, {97, 138}, {118, 157}, {110, 128}, {113, 159}, {101, 138}, {127, 144}, {108, 156}, {106, 155}, {122, 139}, {105, 154}, {111, 155}, {64, 182}, {73, 191}, {120, 129}, {91, 166} }>;

(II) A more general form is to represent the graph as the orbit of {62, 63} under the group generated by the following permutations:

a: (1, 2, 179, 177, 130, 165, 169, 5)(3, 58, 120, 157, 42, 155, 68, 50)(4, 12, 178, 185, 167, 189, 147, 30)(6, 174, 23, 133, 186, 136, 32, 152)(7, 149, 129, 118, 81, 106, 22, 27)(8, 57, 15, 172, 188, 161, 181, 170)(9, 21, 104, 162, 80, 128, 78, 49)(10, 24, 141, 126, 82, 124, 135, 20)(11, 56, 107, 166, 83, 160, 116, 51)(13, 134, 190, 84, 53, 143, 16, 175)(14, 28, 37, 145, 105, 131, 117, 122)(17, 111, 73, 87, 102, 92, 74, 183)(18, 144, 48, 69, 127, 43, 72, 109)(19, 173, 64, 108, 192, 119, 54, 150)(25, 29, 148, 121, 125, 132, 138, 61)(26, 60, 100, 146, 75, 168, 86, 36)(31, 59, 63, 176, 182, 156, 184, 158)(33, 180, 47, 103, 95, 77, 99, 93)(34, 90, 164, 89, 70, 113, 46, 140)(35, 151, 40, 171, 62, 123, 191, 137)(38, 110, 96, 45, 114, 71, 41, 163)(39, 153, 98, 79, 154, 97, 94, 139)(44, 187, 67, 112, 65, 88, 115, 91)(52, 85, 159, 76, 66, 101, 55, 142)
b: (3, 9)(4, 167)(6, 13)(7, 20)(8, 188)(10, 149)(11, 75)(12, 189)(14, 29)(15, 181)(16, 32)(17, 38)(19, 62)(21, 58)(22, 124)(23, 190)(24, 129)(25, 122)(26, 83)(27, 135)(28, 148)(30, 185)(33, 65)(34, 70)(35, 192)(36, 166)(37, 121)(40, 54)(41, 74)(42, 80)(44, 95)(45, 87)(46, 164)(47, 115)(49, 50)(51, 146)(52, 66)(53, 186)(55, 159)(56, 168)(57, 161)(60, 160)(61, 117)(64, 191)(67, 99)(68, 78)(71, 92)(73, 96)(76, 142)(77, 187)(81, 126)(82, 106)(84, 133)(85, 101)(86, 107)(88, 180)(89, 140)(90, 113)(91, 103)(93, 112)(100, 116)(102, 114)(104, 120)(105, 132)(108, 137)(110, 111)(118, 141)(119, 151)(123, 173)(125, 145)(128, 155)(131, 138)(134, 174)(136, 143)(147, 178)(150, 171)(152, 175)(157, 162)(163, 183)(170, 172)
c: (2, 152)(3, 135)(5, 175)(6, 93)(7, 109)(8, 174)(9, 149)(10, 86)(11, 145)(12, 108)(13, 183)(14, 89)(15, 143)(16, 112)(17, 60)(18, 127)(19, 111)(20, 144)(21, 47)(22, 142)(23, 45)(24, 101)(25, 68)(26, 138)(27, 107)(28, 104)(29, 90)(30, 137)(31, 119)(32, 163)(33, 146)(34, 48)(35, 180)(36, 95)(37, 79)(38, 155)(39, 55)(40, 71)(41, 51)(42, 141)(43, 126)(44, 50)(46, 164)(49, 73)(52, 66)(53, 87)(54, 88)(56, 115)(57, 156)(58, 114)(59, 161)(61, 97)(62, 77)(63, 123)(64, 187)(65, 157)(67, 160)(69, 81)(70, 72)(74, 162)(75, 148)(76, 129)(78, 131)(80, 106)(82, 100)(83, 122)(84, 177)(85, 124)(91, 190)(92, 192)(94, 98)(96, 166)(99, 128)(102, 168)(103, 186)(105, 140)(110, 191)(113, 132)(116, 118)(117, 139)(120, 125)(121, 153)(133, 165)(134, 181)(136, 188)(147, 179)(150, 189)(151, 184)(154, 159)(169, 178)(171, 185)(173, 182)
d: (2, 5)(4, 167)(6, 32)(8, 181)(10, 135)(11, 83)(12, 185)(13, 16)(15, 188)(17, 74)(19, 54)(21, 49)(22, 129)(23, 186)(24, 124)(25, 148)(26, 75)(27, 149)(28, 122)(30, 189)(31, 63)(33, 99)(35, 191)(36, 168)(37, 117)(38, 41)(40, 62)(43, 69)(44, 115)(46, 164)(47, 95)(48, 72)(50, 58)(51, 160)(53, 190)(55, 159)(56, 166)(57, 161)(60, 146)(61, 121)(64, 192)(65, 67)(68, 120)(71, 110)(73, 102)(76, 101)(77, 180)(78, 104)(79, 97)(82, 141)(85, 142)(88, 187)(89, 113)(90, 140)(92, 111)(94, 98)(96, 114)(106, 118)(109, 144)(119, 173)(123, 151)(125, 138)(128, 162)(131, 145)(134, 143)(136, 174)(139, 153)(155, 157)(158, 176)(165, 177)(169, 179)(182, 184)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 84 ]
192
-1 2 5 152 175
-2 1 13 179 6
-3 14 102 7 73
-4 143 15 8 174
-5 1 169 16 32
-6 33 2 17 30
-7 34 3 18 107
-8 35 4 147 19
-9 114 29 96 20
-10 144 36 113 21
-11 22 37 115 65
-12 23 57 16 172
-13 2 38 185 65
-14 66 3 39 116
-15 178 4 40 64
-16 12 67 5 41
-17 68 6 62 42
-18 69 7 20 43
-19 44 38 8 63
-20 70 18 9 86
-21 45 71 148 10
-22 11 46 68 72
-23 12 177 47 73
-24 46 26 48 104
-25 49 60 139 142
-26 99 24 61 95
-27 56 50 140 109
-28 101 58 51 153
-29 100 39 52 9
-30 57 170 6 53
-31 59 158 40 54
-32 99 189 5 74
-33 100 35 6 75
-34 101 126 7 76
-35 33 102 8 184
-36 77 103 138 10
-37 11 55 98 120
-38 78 13 80 19
-39 79 14 29 97
-40 47 15 74 31
-41 80 16 104 54
-42 81 17 105 74
-43 48 82 18 106
-44 83 19 107 53
-45 49 84 108 21
-46 22 24 85 76
-47 23 40 75 86
-48 24 129 43 109
-49 110 45 25 135
-50 111 122 27 87
-51 88 112 28 106
-52 89 113 105 29
-53 44 165 114 30
-54 115 181 41 31
-55 89 90 37 61
-56 88 145 91 27
-57 12 30 151 173
-58 92 28 149 87
-59 171 150 63 31
-60 77 25 93 141
-61 55 78 26 94
-62 188 17 95 63
-63 176 59 62 19
-64 67 15 182 96
-65 11 13 192 116
-66 132 90 14 140
-67 16 83 116 64
-68 22 17 73 117
-69 72 18 118 141
-70 81 85 20 142
-71 143 162 119 21
-72 22 144 69 124
-73 23 68 3 191
-74 40 42 32 120
-75 33 121 47 124
-76 34 122 46 125
-77 123 36 136 60
-78 124 38 61 96
-79 145 125 39 94
-80 132 38 126 41
-81 70 116 127 42
-82 90 146 128 43
-83 44 67 117 129
-84 45 91 147 130
-85 46 70 148 131
-86 132 47 95 20
-87 133 58 137 50
-88 56 134 51 119
-89 55 135 52 118
-90 55 66 82 149
-91 56 166 84 150
-92 58 157 136 151
-93 146 60 137 152
-94 79 61 117 153
-95 26 62 86 186
-96 78 190 9 64
-97 39 138 98 131
-98 121 37 139 97
-99 100 26 191 32
-100 33 99 126 29
-101 34 28 138 164
-102 35 3 120 186
-103 133 36 168 171
-104 121 24 114 41
-105 154 52 107 42
-106 155 113 51 43
-107 44 115 105 7
-108 45 112 156 172
-109 135 48 27 127
-110 134 49 128 173
-111 155 123 50 174
-112 160 51 108 175
-113 159 106 52 10
-114 104 192 9 53
-115 11 190 107 54
-116 67 14 81 65
-117 68 159 83 94
-118 89 69 157 160
-119 88 158 71 161
-120 102 37 74 129
-121 104 159 75 98
-122 50 160 139 76
-123 77 176 111 161
-124 78 72 75 164
-125 79 168 162 76
-126 34 100 80 127
-127 144 81 126 109
-128 110 82 138 163
-129 48 83 120 164
-130 165 133 177 84
-131 155 166 85 97
-132 66 154 80 86
-133 178 103 130 87
-134 88 110 167 179
-135 89 168 49 109
-136 77 167 92 169
-137 156 93 170 87
-138 101 36 128 97
-139 154 122 25 98
-140 66 27 159 141
-141 69 60 140 162
-142 145 25 70 164
-143 187 4 169 71
-144 72 127 149 10
-145 56 79 157 142
-146 180 82 93 148
-147 181 84 8 152
-148 146 85 21 153
-149 144 166 90 58
-150 91 59 170 163
-151 57 92 158 180
-152 1 147 93 183
-153 154 148 28 94
-154 132 105 139 153
-155 111 106 183 131
-156 137 182 184 108
-157 145 92 183 118
-158 151 184 31 119
-159 121 113 117 140
-160 187 122 112 118
-161 123 189 119 185
-162 125 71 141 163
-163 128 150 162 175
-164 101 124 129 142
-165 169 53 130 186
-166 187 91 149 131
-167 188 134 136 181
-168 135 103 125 180
-169 143 165 136 5
-170 189 137 150 30
-171 59 103 172 183
-172 12 171 108 185
-173 110 176 187 57
-174 111 179 4 180
-175 1 112 178 163
-176 123 182 63 173
-177 23 179 190 130
-178 133 188 15 175
-179 177 2 134 174
-180 146 168 151 174
-181 167 147 191 54
-182 176 156 191 64
-183 155 157 171 152
-184 35 156 158 192
-185 13 161 172 186
-186 165 102 95 185
-187 143 166 160 173
-188 167 178 192 62
-189 190 170 161 32
-190 177 189 115 96
-191 99 181 182 73
-192 188 114 184 65
0

**************