C4graphGraph forms for C4 [ 192, 90 ] = UG(ATD[192,49])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 90 ] = UG(ATD[192,49]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {98, 99}, {186, 187}, {170, 171}, {110, 111}, {124, 125}, {56, 58}, {85, 87}, {128, 130}, {140, 142}, {1, 2}, {189, 190}, {165, 166}, {136, 139}, {1, 5}, {184, 188}, {41, 45}, {3, 7}, {2, 6}, {83, 86}, {91, 94}, {139, 142}, {1, 7}, {179, 181}, {16, 22}, {35, 36}, {23, 31}, {179, 187}, {53, 61}, {71, 79}, {96, 104}, {118, 127}, {4, 15}, {69, 78}, {4, 8}, {150, 154}, {3, 14}, {167, 170}, {133, 136}, {69, 75}, {183, 185}, {2, 13}, {148, 155}, {115, 124}, {4, 20}, {47, 63}, {75, 90}, {1, 19}, {43, 57}, {3, 17}, {107, 127}, {5, 16}, {164, 177}, {37, 48}, {97, 116}, {135, 145}, {6, 17}, {130, 149}, {64, 88}, {167, 191}, {132, 156}, {32, 57}, {141, 148}, {8, 18}, {141, 151}, {12, 22}, {9, 19}, {129, 154}, {162, 185}, {76, 81}, {77, 80}, {10, 20}, {171, 181}, {42, 52}, {11, 21}, {144, 176}, {133, 164}, {157, 188}, {72, 106}, {140, 175}, {151, 180}, {5, 33}, {15, 43}, {14, 42}, {13, 41}, {12, 40}, {7, 35}, {6, 34}, {9, 44}, {155, 190}, {138, 175}, {134, 160}, {135, 161}, {137, 175}, {10, 45}, {144, 183}, {65, 102}, {31, 56}, {23, 48}, {142, 166}, {13, 36}, {30, 55}, {28, 53}, {26, 51}, {24, 49}, {78, 100}, {146, 184}, {132, 174}, {25, 50}, {29, 54}, {8, 36}, {11, 39}, {10, 38}, {9, 37}, {68, 105}, {150, 187}, {90, 119}, {131, 173}, {147, 189}, {144, 190}, {5, 42}, {70, 105}, {27, 52}, {68, 116}, {70, 118}, {69, 117}, {71, 119}, {72, 120}, {73, 121}, {74, 122}, {75, 123}, {76, 124}, {64, 113}, {66, 115}, {131, 178}, {133, 180}, {2, 48}, {28, 46}, {16, 34}, {3, 49}, {65, 114}, {159, 172}, {146, 161}, {140, 191}, {129, 178}, {88, 108}, {143, 187}, {142, 186}, {89, 109}, {4, 50}, {131, 180}, {132, 179}, {11, 51}, {12, 52}, {95, 103}, {22, 47}, {145, 168}, {144, 169}, {140, 181}, {74, 115}, {128, 186}, {145, 171}, {21, 46}, {141, 182}, {16, 44}, {158, 162}, {67, 127}, {6, 56}, {18, 45}, {156, 163}, {24, 88}, {58, 122}, {27, 91}, {26, 90}, {25, 89}, {29, 92}, {17, 83}, {34, 96}, {21, 87}, {20, 86}, {30, 93}, {39, 98}, {18, 84}, {19, 85}, {38, 97}, {55, 112}, {47, 104}, {50, 122}, {46, 103}, {40, 99}, {41, 100}, {43, 102}, {42, 101}, {63, 112}, {39, 119}, {12, 93}, {62, 111}, {60, 109}, {56, 107}, {61, 110}, {23, 67}, {32, 116}, {18, 69}, {59, 108}, {57, 98}, {155, 192}, {53, 105}, {63, 99}, {13, 80}, {55, 106}, {15, 82}, {19, 77}, {31, 65}, {14, 81}, {8, 109}, {10, 111}, {9, 110}, {7, 108}, {62, 85}, {60, 80}, {17, 124}, {61, 80}, {30, 115}, {28, 113}, {24, 117}, {14, 96}, {44, 66}, {15, 97}, {29, 114}, {25, 107}, {60, 78}, {23, 100}, {27, 104}, {35, 86}, {33, 87}, {59, 77}, {58, 76}, {57, 79}, {40, 94}, {33, 88}, {54, 79}, {41, 83}, {11, 112}, {22, 106}, {32, 92}, {24, 101}, {26, 103}, {32, 94}, {33, 95}, {25, 102}, {43, 84}, {29, 157}, {51, 177}, {73, 192}, {38, 172}, {26, 149}, {28, 147}, {48, 160}, {49, 161}, {51, 162}, {62, 173}, {55, 163}, {53, 173}, {54, 174}, {62, 164}, {63, 165}, {45, 176}, {61, 160}, {94, 192}, {35, 130}, {59, 154}, {47, 139}, {54, 146}, {50, 150}, {49, 149}, {20, 177}, {52, 152}, {30, 174}, {46, 159}, {44, 158}, {21, 166}, {59, 136}, {27, 168}, {38, 147}, {60, 137}, {58, 143}, {40, 157}, {31, 169}, {118, 192}, {34, 153}, {39, 156}, {37, 153}, {36, 154}, {37, 155}, {95, 158}, {114, 176}, {81, 146}, {93, 158}, {121, 189}, {125, 185}, {125, 184}, {95, 152}, {123, 188}, {76, 132}, {78, 134}, {64, 137}, {123, 176}, {97, 173}, {71, 138}, {99, 174}, {77, 131}, {126, 177}, {102, 182}, {72, 153}, {89, 138}, {110, 189}, {66, 148}, {108, 186}, {111, 183}, {122, 163}, {117, 175}, {68, 159}, {103, 188}, {104, 181}, {84, 138}, {82, 141}, {87, 136}, {109, 178}, {105, 137}, {68, 165}, {73, 168}, {118, 151}, {121, 152}, {92, 190}, {126, 156}, {74, 169}, {100, 135}, {101, 134}, {116, 151}, {67, 167}, {91, 191}, {121, 157}, {79, 170}, {93, 184}, {64, 166}, {127, 153}, {123, 147}, {125, 149}, {126, 150}, {73, 160}, {113, 152}, {75, 161}, {92, 182}, {107, 129}, {65, 170}, {67, 168}, {86, 185}, {96, 143}, {82, 163}, {120, 139}, {70, 178}, {71, 179}, {101, 145}, {66, 183}, {112, 133}, {114, 135}, {117, 128}, {82, 164}, {90, 172}, {85, 162}, {113, 134}, {119, 128}, {120, 143}, {84, 172}, {70, 191}, {120, 129}, {81, 171}, {83, 169}, {72, 180}, {74, 182}, {126, 130}, {98, 159}, {89, 167}, {91, 165}, {106, 148} }>;

(II) A more general form is to represent the graph as the orbit of {98, 99} under the group generated by the following permutations:

a: (1, 2, 48, 160, 134, 101, 42, 5)(3, 34, 9, 80, 100, 168, 152, 88)(4, 102, 32, 159, 119, 132, 55, 164)(6, 37, 61, 78, 145, 52, 33, 7)(8, 65, 94, 46, 128, 76, 106, 62)(10, 89, 29, 165, 26, 187, 115, 180)(11, 126, 122, 141, 97, 84, 79, 99)(12, 87, 35, 56, 155, 53, 69, 171)(13, 23, 73, 113, 24, 14, 16, 19)(15, 43, 57, 98, 39, 156, 163, 82)(17, 153, 110, 60, 135, 27, 95, 108)(18, 170, 40, 21, 130, 58, 148, 173)(20, 25, 92, 68, 90, 179, 30, 133)(22, 85, 36, 31, 192, 28, 117, 81)(38, 138, 54, 63, 51, 150, 74, 151)(41, 67, 121, 64, 49, 96, 44, 77)(45, 167, 157, 166, 149, 143, 66, 131)(47, 162, 154, 169, 118, 147, 175, 146)(50, 182, 116, 172, 71, 174, 112, 177)(59, 83, 127, 189, 137, 161, 104, 158)(70, 123, 140, 184, 139, 185, 129, 144)(72, 111, 109, 114, 91, 103, 186, 124)(75, 181, 93, 136, 86, 107, 190, 105)(120, 183, 178, 176, 191, 188, 142, 125)
b: (2, 7, 5, 19)(3, 33, 9, 13)(4, 171, 11, 192)(6, 108, 16, 77)(8, 81, 21, 155)(10, 135, 26, 121)(12, 173, 31, 128)(14, 87, 37, 36)(15, 170, 39, 94)(17, 88, 44, 80)(18, 146, 46, 190)(20, 145, 51, 73)(22, 131, 56, 186)(23, 130, 52, 62)(24, 158, 61, 83)(25, 179, 63, 151)(27, 164, 67, 126)(28, 144, 69, 184)(29, 172)(30, 105, 74, 175)(32, 43, 79, 98)(34, 59)(35, 42, 85, 48)(38, 114, 90, 157)(40, 97, 65, 119)(41, 49, 95, 110)(45, 161, 103, 189)(47, 180, 107, 187)(50, 181, 112, 118)(53, 169, 117, 93)(54, 159, 92, 84)(55, 70, 122, 140)(58, 142, 106, 178)(60, 124, 64, 66)(68, 182, 138, 174)(71, 99, 116, 102)(72, 129, 143, 139)(75, 188, 147, 176)(76, 166, 148, 109)(78, 125, 113, 183)(82, 167, 156, 91)(86, 101, 162, 160)(89, 132, 165, 141)(96, 136, 153, 154)(100, 149, 152, 111)(104, 133, 127, 150)(115, 137)(134, 185)(163, 191)(168, 177)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 90 ]
192
-1 2 5 7 19
-2 1 13 48 6
-3 14 49 17 7
-4 15 50 8 20
-5 33 1 16 42
-6 34 56 2 17
-7 1 35 3 108
-8 36 4 18 109
-9 44 110 37 19
-10 45 111 38 20
-11 112 39 51 21
-12 22 93 40 52
-13 2 36 80 41
-14 3 81 96 42
-15 4 82 97 43
-16 22 44 34 5
-17 3 124 6 83
-18 45 69 84 8
-19 77 1 85 9
-20 177 4 86 10
-21 11 166 46 87
-22 12 47 16 106
-23 67 100 48 31
-24 88 101 49 117
-25 89 102 50 107
-26 90 103 149 51
-27 91 168 104 52
-28 46 113 147 53
-29 157 92 114 54
-30 55 93 115 174
-31 23 56 169 65
-32 57 92 94 116
-33 88 5 95 87
-34 16 6 96 153
-35 36 7 86 130
-36 154 13 35 8
-37 155 48 9 153
-38 147 172 97 10
-39 11 156 119 98
-40 99 12 157 94
-41 45 100 13 83
-42 101 14 5 52
-43 57 102 15 84
-44 66 158 16 9
-45 176 18 41 10
-46 103 159 28 21
-47 22 104 139 63
-48 23 2 37 160
-49 24 3 149 161
-50 122 25 4 150
-51 11 177 26 162
-52 12 27 42 152
-53 28 61 105 173
-54 79 146 29 174
-55 112 106 30 163
-56 58 6 107 31
-57 79 32 43 98
-58 143 56 122 76
-59 77 154 136 108
-60 78 80 137 109
-61 110 80 160 53
-62 111 85 173 164
-63 99 165 112 47
-64 88 166 113 137
-65 102 114 170 31
-66 44 115 148 183
-67 23 167 168 127
-68 165 159 105 116
-69 78 18 117 75
-70 178 191 105 118
-71 79 179 138 119
-72 180 106 120 153
-73 121 168 192 160
-74 122 169 115 182
-75 90 123 69 161
-76 132 58 124 81
-77 80 59 19 131
-78 100 134 69 60
-79 57 71 170 54
-80 77 13 60 61
-81 14 146 171 76
-82 15 141 163 164
-83 169 17 41 86
-84 138 18 172 43
-85 62 19 162 87
-86 35 83 20 185
-87 33 136 85 21
-88 33 24 64 108
-89 167 25 138 109
-90 26 172 75 119
-91 165 191 27 94
-92 190 182 29 32
-93 12 158 30 184
-94 91 192 40 32
-95 33 103 158 152
-96 143 34 14 104
-97 15 38 116 173
-98 99 57 159 39
-99 40 63 174 98
-100 23 78 135 41
-101 24 134 145 42
-102 25 182 43 65
-103 188 46 26 95
-104 47 27 181 96
-105 68 70 137 53
-106 22 55 148 72
-107 56 25 127 129
-108 88 59 7 186
-109 89 178 60 8
-110 111 189 61 9
-111 110 62 183 10
-112 11 55 133 63
-113 134 28 64 152
-114 176 135 29 65
-115 66 124 30 74
-116 68 151 97 32
-117 24 69 128 175
-118 70 192 127 151
-119 90 71 39 128
-120 143 72 139 129
-121 189 157 73 152
-122 58 50 74 163
-123 176 188 147 75
-124 125 115 17 76
-125 124 149 184 185
-126 177 156 150 130
-127 67 107 118 153
-128 117 119 130 186
-129 154 178 107 120
-130 35 126 149 128
-131 77 178 180 173
-132 156 179 174 76
-133 112 136 180 164
-134 78 101 113 160
-135 100 145 114 161
-136 133 59 139 87
-137 60 105 64 175
-138 89 71 84 175
-139 47 136 120 142
-140 191 181 142 175
-141 82 148 182 151
-142 166 139 140 186
-143 187 58 96 120
-144 176 190 169 183
-145 101 135 168 171
-146 81 161 184 54
-147 123 189 38 28
-148 66 155 106 141
-149 26 125 49 130
-150 154 187 126 50
-151 180 116 118 141
-152 121 113 95 52
-153 34 37 72 127
-154 36 59 150 129
-155 190 37 148 192
-156 132 126 39 163
-157 121 188 29 40
-158 44 93 95 162
-159 46 68 172 98
-160 134 48 61 73
-161 135 146 49 75
-162 158 51 85 185
-163 55 122 156 82
-164 133 177 82 62
-165 166 68 91 63
-166 165 64 21 142
-167 67 89 191 170
-168 67 145 27 73
-169 144 83 74 31
-170 79 167 171 65
-171 145 81 170 181
-172 90 38 159 84
-173 62 53 97 131
-174 99 132 30 54
-175 137 138 117 140
-176 45 144 123 114
-177 126 51 20 164
-178 70 129 109 131
-179 132 187 71 181
-180 133 72 151 131
-181 179 104 171 140
-182 102 92 74 141
-183 66 111 144 185
-184 188 146 125 93
-185 125 183 162 86
-186 187 128 108 142
-187 143 179 150 186
-188 123 157 103 184
-189 110 121 190 147
-190 144 155 189 92
-191 167 91 70 140
-192 155 94 73 118
0

**************