[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 94 ] =
UG(ATD[192,95]).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {30, 31}, {188, 189}, {168, 169}, {64, 65}, {58, 59}, {34, 35},
{84, 85}, {124, 125}, {132, 133}, {68, 70}, {72, 74}, {88, 90}, {108, 110}, {1,
2}, {177, 178}, {153, 154}, {148, 151}, {53, 54}, {33, 37}, {146, 150}, {145,
149}, {1, 4}, {187, 190}, {152, 157}, {2, 7}, {57, 63}, {184, 190}, {163, 165},
{115, 117}, {1, 6}, {179, 180}, {155, 156}, {43, 44}, {81, 86}, {99, 100}, {178,
186}, {183, 191}, {3, 8}, {36, 47}, {82, 89}, {3, 15}, {5, 9}, {51, 62}, {118,
120}, {145, 159}, {1, 14}, {129, 144}, {174, 191}, {164, 182}, {165, 183}, {167,
180}, {2, 22}, {173, 185}, {161, 181}, {42, 62}, {11, 31}, {10, 30}, {9, 29},
{8, 28}, {5, 17}, {4, 16}, {3, 23}, {100, 113}, {102, 112}, {175, 185}, {172,
186}, {99, 116}, {111, 119}, {15, 21}, {39, 60}, {167, 188}, {129, 154}, {4,
24}, {72, 84}, {7, 27}, {6, 26}, {5, 25}, {39, 58}, {166, 187}, {108, 113}, {46,
48}, {170, 180}, {160, 190}, {12, 19}, {175, 176}, {160, 191}, {79, 80}, {21,
53}, {12, 45}, {67, 98}, {139, 170}, {14, 44}, {158, 189}, {157, 185}, {68, 97},
{141, 171}, {133, 162}, {155, 188}, {137, 174}, {5, 45}, {146, 186}, {18, 58},
{17, 57}, {16, 56}, {139, 162}, {11, 33}, {144, 187}, {12, 32}, {145, 189}, {68,
104}, {13, 33}, {131, 175}, {158, 179}, {147, 189}, {20, 59}, {148, 187}, {82,
125}, {130, 173}, {2, 50}, {21, 37}, {20, 36}, {19, 35}, {18, 34}, {4, 52}, {3,
51}, {130, 178}, {134, 182}, {135, 183}, {154, 171}, {128, 178}, {155, 169},
{151, 165}, {150, 164}, {21, 38}, {87, 99}, {152, 172}, {142, 186}, {11, 62},
{138, 191}, {140, 185}, {141, 184}, {17, 39}, {28, 42}, {19, 36}, {71, 112},
{94, 105}, {134, 177}, {136, 176}, {14, 55}, {152, 161}, {13, 54}, {150, 173},
{83, 104}, {29, 32}, {136, 181}, {140, 177}, {80, 110}, {94, 96}, {142, 176},
{144, 174}, {10, 53}, {153, 166}, {15, 48}, {135, 184}, {49, 112}, {51, 114},
{33, 99}, {49, 115}, {47, 109}, {46, 108}, {42, 104}, {53, 118}, {37, 97}, {59,
127}, {132, 192}, {39, 98}, {56, 125}, {6, 64}, {61, 123}, {45, 107}, {36, 98},
{7, 65}, {57, 126}, {30, 86}, {48, 120}, {30, 87}, {8, 66}, {51, 121}, {9, 67},
{13, 70}, {55, 124}, {44, 103}, {27, 80}, {31, 83}, {28, 81}, {55, 122}, {10,
68}, {52, 122}, {41, 103}, {11, 69}, {29, 82}, {62, 113}, {41, 102}, {25, 73},
{23, 70}, {40, 121}, {26, 75}, {23, 69}, {55, 101}, {25, 74}, {9, 93}, {24, 77},
{26, 79}, {45, 123}, {16, 71}, {50, 101}, {26, 77}, {25, 78}, {54, 110}, {18,
72}, {19, 73}, {23, 76}, {50, 105}, {7, 91}, {22, 75}, {52, 105}, {20, 74}, {49,
111}, {41, 119}, {40, 118}, {8, 87}, {159, 192}, {61, 93}, {63, 95}, {61, 95},
{60, 95}, {16, 117}, {60, 89}, {12, 106}, {37, 66}, {46, 70}, {168, 192}, {38,
76}, {50, 88}, {43, 64}, {24, 119}, {49, 94}, {38, 86}, {41, 88}, {43, 90}, {46,
92}, {60, 78}, {47, 93}, {179, 192}, {32, 84}, {40, 92}, {43, 94}, {63, 74}, {6,
112}, {42, 92}, {35, 85}, {22, 96}, {44, 91}, {18, 106}, {24, 96}, {38, 92},
{10, 113}, {34, 89}, {15, 116}, {17, 109}, {14, 115}, {13, 114}, {40, 87}, {34,
93}, {32, 95}, {20, 107}, {27, 147}, {54, 167}, {22, 132}, {52, 166}, {31, 136},
{57, 161}, {28, 134}, {29, 135}, {27, 133}, {59, 164}, {56, 153}, {48, 149},
{35, 137}, {47, 130}, {56, 138}, {58, 128}, {63, 131}, {61, 128}, {75, 139},
{76, 140}, {84, 148}, {90, 155}, {109, 172}, {77, 143}, {69, 134}, {78, 141},
{89, 154}, {103, 163}, {120, 188}, {124, 184}, {80, 149}, {82, 151}, {107, 173},
{81, 150}, {91, 156}, {103, 160}, {110, 169}, {71, 143}, {126, 182}, {72, 129},
{105, 160}, {109, 164}, {111, 166}, {65, 139}, {67, 137}, {66, 136}, {107, 161},
{111, 165}, {127, 181}, {69, 142}, {83, 152}, {86, 157}, {88, 147}, {85, 153},
{100, 168}, {115, 190}, {66, 140}, {73, 135}, {67, 141}, {100, 170}, {108, 162},
{126, 176}, {127, 177}, {122, 171}, {79, 156}, {116, 167}, {91, 143}, {122,
174}, {123, 175}, {123, 172}, {114, 170}, {73, 144}, {75, 145}, {78, 148}, {121,
162}, {76, 146}, {77, 147}, {90, 132}, {117, 171}, {118, 168}, {124, 163}, {85,
183}, {117, 151}, {98, 129}, {71, 163}, {81, 181}, {83, 182}, {121, 159}, {114,
149}, {65, 169}, {106, 130}, {106, 131}, {101, 143}, {116, 159}, {97, 142},
{101, 138}, {64, 179}, {125, 137}, {102, 158}, {102, 156}, {104, 146}, {79,
180}, {97, 157}, {127, 131}, {119, 138}, {120, 133}, {96, 158}, {126, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {30, 31}
under the group generated by the following permutations:
a: (2, 6)(3, 10)(4, 14)(5, 18)(7, 26)(8, 30)(9, 34)(11, 42)(13, 46)(15, 53)(16,
55)(17, 58)(19, 32)(20, 63)(22, 64)(23, 68)(24, 44)(25, 72)(27, 79)(28, 31)(29,
35)(33, 92)(36, 95)(37, 38)(40, 99)(43, 96)(45, 106)(47, 61)(48, 54)(49,
105)(50, 112)(51, 113)(52, 115)(56, 124)(57, 59)(60, 98)(65, 75)(66, 86)(67,
89)(69, 104)(71, 101)(73, 84)(76, 97)(77, 91)(78, 129)(81, 136)(82, 137)(83,
134)(85, 135)(88, 102)(90, 158)(100, 121)(103, 119)(107, 131)(108, 114)(109,
128)(110, 149)(111, 160)(116, 118)(117, 122)(120, 167)(123, 130)(126, 164)(127,
161)(132, 179)(133, 180)(138, 163)(140, 157)(141, 154)(142, 146)(144, 148)(145,
169)(147, 156)(150, 176)(151, 174)(152, 177)(153, 184)(155, 189)(159, 168)(162,
170)(165, 191)(166, 190)(172, 178)(173, 175) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(7, 64)(8, 23)(9, 25)(11, 42)(13, 40)(16, 52)(19, 32)(20, 61)(22,
26)(27, 179)(28, 69)(29, 73)(30, 68)(31, 104)(33, 92)(34, 72)(35, 84)(36,
95)(37, 38)(43, 91)(46, 99)(47, 63)(48, 116)(49, 101)(50, 112)(54, 118)(55,
115)(56, 166)(57, 109)(59, 128)(60, 98)(66, 76)(67, 78)(70, 87)(71, 105)(74,
93)(77, 96)(79, 132)(80, 192)(81, 142)(82, 144)(86, 97)(88, 102)(89, 129)(90,
156)(94, 143)(100, 108)(107, 123)(110, 168)(111, 138)(114, 121)(117, 122)(120,
167)(124, 190)(125, 187)(126, 164)(127, 178)(130, 131)(133, 180)(136, 146)(137,
148)(147, 158)(149, 159)(150, 176)(151, 174)(160, 163)(161, 172)(162, 170)(165,
191)(173, 175)(181, 186)
c: (2, 4)(3, 36)(5, 33)(6, 14)(7, 16)(8, 20)(9, 13)(10, 95)(11, 17)(12, 21)(15,
19)(18, 92)(22, 52)(23, 47)(24, 50)(25, 99)(26, 55)(27, 56)(28, 59)(29, 54)(30,
63)(31, 57)(32, 53)(34, 46)(35, 48)(37, 45)(38, 106)(39, 62)(40, 72)(42, 58)(43,
49)(44, 112)(51, 98)(60, 113)(61, 68)(64, 115)(65, 117)(66, 107)(67, 114)(69,
109)(70, 93)(71, 91)(73, 116)(74, 87)(75, 122)(76, 130)(77, 101)(78, 100)(79,
124)(80, 125)(81, 127)(82, 110)(83, 126)(84, 118)(85, 120)(86, 131)(88, 119)(89,
108)(90, 111)(96, 105)(97, 123)(102, 103)(104, 128)(121, 129)(132, 166)(133,
153)(134, 164)(135, 167)(136, 161)(137, 149)(138, 147)(139, 171)(140, 173)(141,
170)(142, 172)(144, 159)(145, 174)(146, 178)(148, 168)(150, 177)(151, 169)(152,
176)(154, 162)(155, 165)(156, 163)(157, 175)(158, 160)(179, 190)(180, 184)(183,
188)(187, 192)(189, 191)
d: (1, 2)(3, 9)(4, 7)(5, 8)(6, 50)(10, 72)(11, 36)(12, 37)(13, 35)(14, 22)(15,
29)(16, 27)(17, 28)(18, 68)(19, 33)(20, 31)(21, 32)(23, 93)(24, 91)(25, 87)(26,
101)(30, 74)(34, 70)(38, 95)(39, 42)(40, 78)(41, 102)(43, 94)(44, 96)(45,
66)(46, 89)(47, 69)(48, 82)(49, 90)(51, 67)(52, 65)(53, 84)(54, 85)(55, 75)(56,
80)(57, 81)(58, 104)(59, 83)(60, 92)(61, 76)(62, 98)(63, 86)(64, 105)(71,
147)(73, 99)(77, 143)(79, 138)(88, 112)(97, 106)(100, 144)(103, 158)(107,
136)(108, 154)(109, 134)(110, 153)(111, 155)(113, 129)(114, 137)(115, 132)(116,
135)(117, 133)(118, 148)(119, 156)(120, 151)(121, 141)(122, 139)(123, 140)(124,
145)(125, 149)(126, 150)(127, 152)(128, 146)(130, 142)(131, 157)(159, 184)(160,
179)(161, 181)(162, 171)(163, 189)(164, 182)(165, 188)(166, 169)(167, 183)(168,
187)(170, 174)(172, 177)(173, 176)(175, 185)(178, 186)(180, 191)(190, 192)
C4[ 192, 94 ]
192
-1 2 14 4 6
-2 22 1 50 7
-3 23 15 51 8
-4 1 24 16 52
-5 45 25 17 9
-6 1 112 26 64
-7 2 91 27 65
-8 66 3 28 87
-9 67 5 93 29
-10 68 113 30 53
-11 33 69 62 31
-12 45 106 19 32
-13 33 70 114 54
-14 44 55 1 115
-15 3 48 116 21
-16 56 4 71 117
-17 57 5 39 109
-18 34 58 72 106
-19 12 35 36 73
-20 36 59 74 107
-21 15 37 38 53
-22 132 2 96 75
-23 3 69 70 76
-24 77 4 96 119
-25 78 5 73 74
-26 77 79 6 75
-27 133 80 147 7
-28 134 81 8 42
-29 135 82 9 32
-30 31 86 10 87
-31 11 136 83 30
-32 12 29 84 95
-33 11 99 13 37
-34 89 35 93 18
-35 34 137 19 85
-36 47 19 20 98
-37 33 66 97 21
-38 92 86 21 76
-39 58 60 17 98
-40 121 92 118 87
-41 88 102 103 119
-42 92 104 28 62
-43 44 90 94 64
-44 14 91 103 43
-45 12 123 5 107
-46 48 70 92 108
-47 36 93 130 109
-48 46 15 149 120
-49 111 112 115 94
-50 88 2 101 105
-51 121 3 114 62
-52 122 166 4 105
-53 118 10 21 54
-54 110 13 167 53
-55 122 101 14 124
-56 125 16 138 153
-57 126 17 161 63
-58 59 39 18 128
-59 58 127 20 164
-60 78 89 39 95
-61 123 93 95 128
-62 11 113 51 42
-63 57 95 74 131
-64 179 6 43 65
-65 169 7 139 64
-66 37 136 8 140
-67 137 9 141 98
-68 70 104 97 10
-69 11 23 134 142
-70 23 13 46 68
-71 143 112 16 163
-72 18 84 74 129
-73 144 25 135 19
-74 25 72 63 20
-75 22 145 26 139
-76 23 146 38 140
-77 143 24 26 147
-78 25 60 148 141
-79 156 80 26 180
-80 110 79 27 149
-81 181 28 150 86
-82 89 125 29 151
-83 104 182 31 152
-84 148 72 85 32
-85 35 84 183 153
-86 157 81 38 30
-87 99 40 8 30
-88 90 147 50 41
-89 154 34 60 82
-90 88 132 155 43
-91 44 143 156 7
-92 46 38 40 42
-93 34 47 61 9
-94 49 105 96 43
-95 60 61 63 32
-96 22 24 158 94
-97 68 157 37 142
-98 67 36 39 129
-99 33 100 116 87
-100 99 113 168 170
-101 55 143 50 138
-102 112 156 158 41
-103 44 160 41 163
-104 68 146 83 42
-105 50 94 160 52
-106 12 18 130 131
-107 45 161 173 20
-108 110 46 113 162
-109 47 17 172 164
-110 80 169 108 54
-111 165 166 49 119
-112 102 49 71 6
-113 100 62 108 10
-114 13 170 149 51
-115 14 190 49 117
-116 99 167 15 159
-117 16 115 171 151
-118 168 40 53 120
-119 111 24 138 41
-120 133 188 48 118
-121 159 40 51 162
-122 55 171 52 174
-123 45 61 172 175
-124 55 125 184 163
-125 56 124 82 137
-126 176 57 182 128
-127 177 59 181 131
-128 178 58 126 61
-129 154 144 72 98
-130 178 47 106 173
-131 127 106 63 175
-132 22 133 90 192
-133 132 27 162 120
-134 177 69 28 182
-135 29 73 183 184
-136 66 176 181 31
-137 67 35 125 174
-138 56 101 191 119
-139 170 162 75 65
-140 66 177 185 76
-141 67 78 171 184
-142 176 69 97 186
-143 77 101 91 71
-144 187 73 129 174
-145 189 159 149 75
-146 104 150 76 186
-147 77 88 189 27
-148 187 78 84 151
-149 145 80 48 114
-150 146 81 173 164
-151 165 82 148 117
-152 157 83 161 172
-153 154 56 166 85
-154 89 171 129 153
-155 188 90 156 169
-156 155 79 91 102
-157 86 97 185 152
-158 189 102 179 96
-159 121 145 192 116
-160 190 103 191 105
-161 57 181 107 152
-162 121 133 139 108
-163 165 124 103 71
-164 59 182 150 109
-165 111 183 151 163
-166 187 111 52 153
-167 188 180 116 54
-168 100 169 192 118
-169 110 155 168 65
-170 100 114 180 139
-171 154 122 117 141
-172 123 152 109 186
-173 150 107 130 185
-174 122 144 191 137
-175 176 123 185 131
-176 136 126 142 175
-177 134 178 127 140
-178 177 128 130 186
-179 158 180 192 64
-180 79 167 179 170
-181 81 136 127 161
-182 134 126 83 164
-183 165 135 191 85
-184 124 135 190 141
-185 157 140 173 175
-186 178 146 172 142
-187 144 166 190 148
-188 155 167 189 120
-189 188 145 147 158
-190 187 115 160 184
-191 138 160 183 174
-192 132 168 179 159
0