C4graphGraph forms for C4 [ 192, 96 ] = UG(ATD[192,125])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 96 ] = UG(ATD[192,125]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {32, 33}, {166, 167}, {148, 149}, {40, 41}, {78, 79}, {1, 3}, {176, 178}, {60, 62}, {44, 46}, {28, 30}, {88, 90}, {124, 127}, {144, 147}, {1, 5}, {11, 14}, {176, 181}, {160, 165}, {65, 68}, {97, 100}, {129, 132}, {1, 7}, {35, 37}, {58, 61}, {162, 165}, {106, 109}, {5, 13}, {96, 104}, {1, 11}, {148, 158}, {66, 72}, {64, 74}, {50, 56}, {37, 47}, {34, 40}, {32, 42}, {3, 9}, {38, 45}, {64, 75}, {3, 15}, {128, 140}, {7, 10}, {53, 56}, {33, 44}, {23, 26}, {169, 185}, {175, 191}, {172, 188}, {160, 177}, {168, 185}, {5, 23}, {170, 184}, {76, 94}, {106, 120}, {6, 21}, {174, 189}, {172, 191}, {164, 183}, {38, 53}, {107, 120}, {5, 17}, {167, 179}, {72, 92}, {13, 25}, {11, 31}, {9, 29}, {110, 122}, {4, 17}, {171, 190}, {162, 183}, {138, 159}, {3, 21}, {173, 187}, {170, 188}, {166, 176}, {162, 180}, {160, 182}, {8, 31}, {169, 190}, {161, 182}, {76, 84}, {111, 119}, {163, 186}, {171, 178}, {9, 19}, {100, 126}, {15, 20}, {161, 186}, {43, 48}, {109, 118}, {7, 27}, {175, 179}, {103, 123}, {142, 147}, {168, 181}, {72, 86}, {163, 189}, {164, 187}, {174, 177}, {167, 184}, {7, 39}, {156, 188}, {73, 105}, {13, 45}, {11, 43}, {9, 41}, {14, 47}, {158, 191}, {152, 185}, {21, 52}, {140, 173}, {17, 51}, {153, 187}, {150, 180}, {129, 163}, {132, 166}, {137, 171}, {2, 33}, {149, 182}, {24, 59}, {129, 162}, {16, 52}, {25, 61}, {19, 55}, {138, 174}, {130, 167}, {155, 190}, {152, 189}, {144, 181}, {16, 54}, {153, 191}, {145, 183}, {25, 63}, {128, 166}, {133, 163}, {136, 174}, {137, 175}, {139, 172}, {154, 189}, {68, 108}, {154, 178}, {146, 186}, {79, 103}, {133, 173}, {10, 35}, {18, 59}, {22, 60}, {158, 180}, {155, 177}, {144, 186}, {134, 172}, {2, 41}, {159, 180}, {157, 182}, {20, 63}, {18, 57}, {12, 39}, {130, 169}, {13, 33}, {151, 187}, {149, 185}, {146, 190}, {22, 58}, {81, 125}, {135, 171}, {136, 164}, {140, 160}, {26, 55}, {145, 188}, {77, 96}, {135, 170}, {23, 57}, {150, 184}, {78, 97}, {157, 178}, {151, 184}, {80, 127}, {134, 169}, {68, 116}, {70, 118}, {67, 113}, {90, 104}, {67, 112}, {74, 121}, {77, 126}, {81, 98}, {14, 59}, {70, 115}, {66, 119}, {28, 41}, {19, 37}, {77, 123}, {69, 114}, {141, 181}, {143, 183}, {2, 59}, {6, 61}, {29, 38}, {139, 176}, {25, 37}, {143, 179}, {141, 177}, {73, 117}, {142, 179}, {15, 49}, {10, 53}, {69, 122}, {27, 36}, {89, 102}, {51, 115}, {57, 121}, {55, 119}, {20, 85}, {39, 102}, {35, 97}, {50, 112}, {32, 100}, {2, 71}, {14, 75}, {4, 65}, {52, 114}, {20, 83}, {63, 120}, {26, 93}, {42, 98}, {57, 113}, {26, 83}, {44, 101}, {30, 84}, {30, 85}, {40, 99}, {15, 67}, {43, 103}, {10, 71}, {45, 96}, {28, 82}, {142, 192}, {58, 116}, {31, 81}, {58, 117}, {62, 110}, {4, 85}, {63, 110}, {22, 71}, {12, 94}, {29, 79}, {19, 65}, {8, 91}, {44, 127}, {21, 70}, {17, 69}, {24, 76}, {22, 67}, {12, 90}, {27, 77}, {18, 68}, {12, 91}, {16, 71}, {49, 105}, {51, 107}, {18, 72}, {55, 109}, {6, 93}, {52, 111}, {156, 192}, {6, 91}, {49, 108}, {24, 69}, {8, 86}, {23, 73}, {4, 91}, {159, 192}, {48, 80}, {60, 92}, {54, 86}, {46, 79}, {54, 84}, {60, 94}, {48, 83}, {16, 120}, {8, 97}, {38, 75}, {173, 192}, {48, 94}, {40, 88}, {47, 95}, {49, 64}, {56, 73}, {51, 66}, {36, 86}, {35, 80}, {50, 65}, {46, 93}, {45, 89}, {56, 76}, {24, 109}, {62, 75}, {47, 90}, {39, 82}, {42, 92}, {54, 64}, {32, 87}, {61, 74}, {53, 66}, {36, 83}, {27, 99}, {62, 70}, {31, 101}, {46, 84}, {34, 89}, {36, 95}, {43, 87}, {30, 96}, {34, 92}, {29, 98}, {42, 85}, {34, 93}, {28, 131}, {50, 147}, {78, 130}, {104, 165}, {88, 136}, {88, 137}, {87, 133}, {82, 129}, {124, 175}, {80, 132}, {82, 134}, {124, 168}, {126, 170}, {81, 135}, {126, 168}, {74, 147}, {89, 128}, {125, 164}, {123, 161}, {87, 139}, {95, 131}, {125, 161}, {95, 128}, {113, 145}, {99, 130}, {102, 135}, {122, 155}, {101, 134}, {104, 139}, {119, 148}, {121, 154}, {105, 141}, {107, 143}, {123, 159}, {112, 149}, {114, 151}, {98, 132}, {99, 133}, {105, 143}, {116, 146}, {112, 151}, {121, 158}, {114, 154}, {116, 156}, {117, 157}, {101, 140}, {113, 155}, {115, 153}, {118, 156}, {78, 165}, {115, 152}, {100, 136}, {102, 138}, {117, 153}, {103, 137}, {108, 152}, {122, 142}, {127, 138}, {106, 157}, {107, 146}, {108, 150}, {110, 148}, {118, 141}, {106, 150}, {111, 145}, {125, 131}, {111, 144}, {124, 131} }>;

(II) A more general form is to represent the graph as the orbit of {32, 33} under the group generated by the following permutations:

a: (3, 5)(4, 6)(7, 11)(8, 12)(9, 13)(10, 14)(15, 23)(16, 24)(17, 21)(18, 22)(19, 25)(20, 26)(27, 43)(28, 44)(29, 45)(30, 46)(31, 39)(32, 40)(33, 41)(34, 42)(35, 47)(36, 48)(49, 73)(50, 74)(51, 70)(52, 69)(53, 75)(54, 76)(55, 63)(56, 64)(57, 67)(58, 68)(59, 71)(60, 72)(61, 65)(62, 66)(77, 103)(78, 104)(79, 96)(80, 95)(81, 102)(82, 101)(85, 93)(86, 94)(87, 99)(88, 100)(89, 98)(90, 97)(107, 118)(108, 117)(109, 120)(110, 119)(111, 122)(112, 121)(125, 138)(126, 137)(127, 131)(128, 132)(129, 140)(130, 139)(141, 143)(142, 144)(145, 155)(146, 156)(149, 158)(150, 157)(151, 154)(152, 153)(159, 161)(160, 162)(163, 173)(164, 174)(167, 176)(168, 175)(169, 172)(170, 171)(177, 183)(178, 184)(179, 181)(180, 182)(185, 191)(186, 192)(187, 189)(188, 190)
b: (3, 11)(4, 12)(5, 7)(6, 8)(9, 14)(10, 13)(15, 43)(16, 44)(17, 39)(18, 40)(19, 47)(20, 48)(21, 31)(22, 32)(23, 27)(24, 28)(25, 35)(26, 36)(29, 75)(30, 76)(33, 71)(34, 72)(41, 59)(42, 60)(45, 53)(46, 54)(49, 103)(50, 104)(51, 102)(52, 101)(55, 95)(56, 96)(57, 99)(58, 100)(61, 97)(62, 98)(63, 80)(64, 79)(65, 90)(66, 89)(67, 87)(68, 88)(69, 82)(70, 81)(73, 77)(74, 78)(85, 94)(86, 93)(105, 123)(106, 124)(107, 138)(108, 137)(109, 131)(110, 132)(111, 140)(112, 139)(113, 133)(114, 134)(115, 135)(116, 136)(117, 126)(118, 125)(119, 128)(120, 127)(121, 130)(122, 129)(141, 161)(142, 162)(143, 159)(144, 160)(145, 173)(146, 174)(147, 165)(148, 166)(149, 176)(150, 175)(151, 172)(152, 171)(153, 170)(154, 169)(155, 163)(156, 164)(157, 168)(158, 167)(177, 186)(178, 185)(179, 180)(181, 182)(183, 192)(184, 191)(187, 188)(189, 190)
c: (1, 2)(3, 33)(4, 34)(5, 41)(6, 42)(7, 59)(8, 60)(9, 13)(10, 14)(11, 71)(12, 72)(15, 44)(16, 43)(17, 40)(18, 39)(19, 45)(20, 46)(21, 32)(22, 31)(23, 28)(24, 27)(25, 29)(26, 30)(35, 75)(36, 76)(37, 38)(47, 53)(48, 54)(49, 127)(50, 128)(51, 88)(52, 87)(55, 96)(56, 95)(57, 82)(58, 81)(61, 98)(62, 97)(63, 79)(64, 80)(65, 89)(66, 90)(67, 101)(68, 102)(69, 99)(70, 100)(73, 131)(74, 132)(77, 109)(78, 110)(83, 84)(85, 93)(86, 94)(91, 92)(103, 120)(104, 119)(105, 124)(106, 123)(107, 137)(108, 138)(111, 139)(112, 140)(113, 134)(114, 133)(115, 136)(116, 135)(117, 125)(118, 126)(121, 129)(122, 130)(141, 168)(142, 167)(143, 175)(144, 176)(145, 172)(146, 171)(147, 166)(148, 165)(149, 160)(150, 159)(151, 173)(152, 174)(153, 164)(154, 163)(155, 169)(156, 170)(157, 161)(158, 162)(177, 185)(178, 186)(183, 191)(184, 192)
d: (1, 3, 9, 19, 37, 25, 13, 5)(2, 4, 10, 20, 38, 26, 14, 6)(7, 15, 29, 55, 47, 61, 33, 17)(8, 16, 30, 56, 48, 62, 34, 18)(11, 21, 41, 65, 35, 63, 45, 23)(12, 22, 42, 66, 36, 64, 46, 24)(27, 49, 79, 109, 90, 58, 32, 51)(28, 50, 80, 110, 89, 57, 31, 52)(39, 67, 98, 119, 95, 74, 44, 69)(40, 68, 97, 120, 96, 73, 43, 70)(53, 83, 75, 93, 59, 91, 71, 85)(54, 84, 76, 94, 60, 92, 72, 86)(77, 105, 103, 118, 88, 116, 100, 107)(78, 106, 104, 117, 87, 115, 99, 108)(81, 111, 131, 147, 127, 122, 102, 113)(82, 112, 132, 148, 128, 121, 101, 114)(123, 141, 137, 156, 136, 146, 126, 143)(124, 142, 138, 155, 135, 145, 125, 144)(129, 149, 166, 158, 140, 154, 134, 151)(130, 150, 165, 157, 139, 153, 133, 152)(159, 177, 171, 188, 164, 186, 168, 179)(160, 178, 172, 187, 163, 185, 167, 180)(161, 181, 175, 192, 174, 190, 170, 183)(162, 182, 176, 191, 173, 189, 169, 184)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 96 ]
192
-1 11 3 5 7
-2 33 59 71 41
-3 1 15 9 21
-4 91 17 85 65
-5 1 23 13 17
-6 91 93 61 21
-7 1 27 39 10
-8 91 31 86 97
-9 3 29 19 41
-10 35 71 7 53
-11 1 14 31 43
-12 90 91 39 94
-13 33 45 25 5
-14 11 47 59 75
-15 67 3 49 20
-16 71 52 54 120
-17 69 4 5 51
-18 57 68 59 72
-19 55 37 9 65
-20 15 83 63 85
-21 3 70 6 52
-22 67 58 60 71
-23 57 26 5 73
-24 69 59 76 109
-25 13 37 61 63
-26 55 23 93 83
-27 77 99 36 7
-28 82 30 41 131
-29 79 38 9 98
-30 28 84 85 96
-31 11 101 81 8
-32 33 100 42 87
-33 44 2 13 32
-34 89 92 93 40
-35 80 37 97 10
-36 27 83 95 86
-37 35 25 47 19
-38 45 29 53 75
-39 12 102 82 7
-40 88 99 34 41
-41 2 28 40 9
-42 92 85 32 98
-43 11 48 103 87
-44 33 46 101 127
-45 89 13 38 96
-46 44 79 93 84
-47 90 14 37 95
-48 80 83 94 43
-49 15 105 64 108
-50 56 112 147 65
-51 66 115 17 107
-52 111 114 16 21
-53 66 56 38 10
-54 16 84 64 86
-55 26 19 119 109
-56 50 73 53 76
-57 121 23 113 18
-58 22 61 116 117
-59 2 24 14 18
-60 22 92 94 62
-61 25 58 6 74
-62 110 70 60 75
-63 110 25 20 120
-64 49 74 75 54
-65 68 4 50 19
-66 72 51 53 119
-67 22 112 113 15
-68 116 18 108 65
-69 122 24 114 17
-70 115 62 118 21
-71 22 2 16 10
-72 66 92 18 86
-73 23 56 105 117
-74 121 147 61 64
-75 14 38 62 64
-76 56 24 94 84
-77 123 27 126 96
-78 165 79 97 130
-79 78 46 103 29
-80 132 35 48 127
-81 135 125 31 98
-82 134 28 39 129
-83 36 26 48 20
-84 46 30 54 76
-85 4 30 20 42
-86 36 72 8 54
-87 133 139 32 43
-88 90 136 137 40
-89 34 45 102 128
-90 88 12 47 104
-91 12 4 6 8
-92 34 60 72 42
-93 34 46 26 6
-94 12 48 60 76
-95 36 47 128 131
-96 77 45 104 30
-97 78 100 35 8
-98 132 81 29 42
-99 133 27 40 130
-100 136 126 97 32
-101 44 134 140 31
-102 89 135 39 138
-103 79 123 137 43
-104 165 90 139 96
-105 143 49 73 141
-106 157 150 109 120
-107 143 146 51 120
-108 68 49 150 152
-109 55 24 106 118
-110 122 148 62 63
-111 144 145 52 119
-112 67 50 149 151
-113 67 155 57 145
-114 154 69 52 151
-115 70 51 152 153
-116 68 156 58 146
-117 58 157 73 153
-118 156 70 141 109
-119 55 66 111 148
-120 16 106 63 107
-121 154 57 158 74
-122 110 155 69 142
-123 77 103 159 161
-124 168 127 131 175
-125 81 161 131 164
-126 77 100 168 170
-127 44 80 124 138
-128 89 166 95 140
-129 132 82 162 163
-130 99 78 167 169
-131 124 125 28 95
-132 166 80 129 98
-133 99 173 163 87
-134 101 169 82 172
-135 102 81 170 171
-136 88 100 174 164
-137 88 103 171 175
-138 102 159 127 174
-139 176 104 172 87
-140 101 160 128 173
-141 177 181 105 118
-142 122 179 147 192
-143 179 105 183 107
-144 111 147 181 186
-145 111 188 113 183
-146 190 116 107 186
-147 144 50 74 142
-148 110 158 149 119
-149 112 148 182 185
-150 180 106 184 108
-151 187 112 114 184
-152 189 115 108 185
-153 187 191 115 117
-154 121 178 189 114
-155 122 177 113 190
-156 188 192 116 118
-157 178 182 106 117
-158 121 180 191 148
-159 123 180 192 138
-160 165 177 182 140
-161 123 125 182 186
-162 165 180 183 129
-163 133 189 129 186
-164 187 125 136 183
-165 78 104 160 162
-166 132 176 167 128
-167 166 179 184 130
-168 124 126 181 185
-169 134 190 130 185
-170 188 135 126 184
-171 178 135 190 137
-172 188 134 191 139
-173 187 133 192 140
-174 177 189 136 138
-175 124 179 191 137
-176 166 178 181 139
-177 155 160 141 174
-178 154 176 157 171
-179 143 167 142 175
-180 158 159 150 162
-181 176 144 168 141
-182 157 149 160 161
-183 143 145 162 164
-184 167 170 150 151
-185 168 169 149 152
-186 144 146 161 163
-187 151 173 153 164
-188 145 156 170 172
-189 154 152 163 174
-190 155 146 169 171
-191 158 172 153 175
-192 156 159 173 142
0

**************