C4graphGraph forms for C4 [ 192, 97 ] = UG(ATD[192,132])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 97 ] = UG(ATD[192,132]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {14, 15}, {86, 87}, {58, 59}, {40, 41}, {26, 27}, {22, 23}, {118, 119}, {120, 121}, {37, 39}, {68, 70}, {61, 63}, {60, 62}, {124, 126}, {1, 2}, {173, 174}, {17, 18}, {5, 6}, {112, 115}, {16, 20}, {155, 159}, {91, 95}, {90, 94}, {82, 86}, {2, 7}, {152, 157}, {66, 71}, {41, 44}, {24, 29}, {8, 13}, {113, 116}, {67, 69}, {123, 125}, {1, 6}, {163, 164}, {153, 158}, {83, 84}, {73, 78}, {42, 45}, {2, 5}, {146, 154}, {64, 73}, {65, 75}, {3, 8}, {65, 74}, {144, 155}, {4, 9}, {179, 190}, {178, 191}, {85, 88}, {38, 43}, {67, 77}, {80, 95}, {178, 189}, {2, 18}, {68, 84}, {12, 28}, {11, 27}, {10, 26}, {4, 20}, {3, 19}, {7, 22}, {72, 89}, {35, 50}, {15, 30}, {9, 24}, {100, 117}, {67, 81}, {76, 94}, {72, 90}, {108, 126}, {6, 21}, {76, 95}, {14, 29}, {130, 150}, {143, 154}, {175, 186}, {7, 17}, {34, 52}, {107, 125}, {164, 188}, {9, 16}, {167, 190}, {166, 191}, {78, 87}, {68, 93}, {47, 54}, {106, 112}, {166, 189}, {175, 180}, {78, 82}, {111, 114}, {164, 185}, {13, 19}, {174, 176}, {79, 81}, {6, 25}, {8, 23}, {31, 63}, {77, 109}, {139, 171}, {15, 46}, {27, 58}, {129, 160}, {130, 163}, {28, 62}, {128, 162}, {131, 161}, {90, 121}, {146, 177}, {24, 60}, {25, 61}, {12, 41}, {150, 179}, {21, 48}, {18, 55}, {146, 183}, {23, 49}, {148, 178}, {138, 172}, {147, 181}, {31, 56}, {93, 122}, {136, 175}, {145, 182}, {85, 125}, {86, 126}, {132, 172}, {138, 162}, {25, 48}, {149, 188}, {65, 104}, {135, 174}, {74, 96}, {85, 127}, {139, 161}, {145, 187}, {19, 56}, {134, 173}, {147, 184}, {19, 63}, {149, 185}, {128, 172}, {20, 57}, {83, 126}, {22, 59}, {29, 51}, {21, 58}, {73, 102}, {26, 53}, {79, 127}, {153, 169}, {152, 168}, {133, 181}, {147, 163}, {30, 47}, {79, 125}, {29, 46}, {75, 120}, {93, 110}, {23, 35}, {66, 118}, {31, 43}, {28, 40}, {143, 187}, {64, 117}, {76, 121}, {69, 112}, {135, 178}, {7, 49}, {156, 170}, {95, 105}, {134, 176}, {142, 184}, {70, 113}, {141, 186}, {26, 34}, {15, 54}, {150, 175}, {129, 184}, {141, 180}, {143, 182}, {8, 50}, {148, 174}, {77, 119}, {9, 51}, {131, 185}, {132, 190}, {136, 179}, {140, 183}, {142, 181}, {156, 160}, {140, 177}, {10, 52}, {11, 53}, {133, 186}, {38, 103}, {49, 115}, {53, 119}, {44, 104}, {45, 105}, {28, 90}, {38, 97}, {56, 112}, {60, 116}, {57, 113}, {50, 123}, {59, 114}, {54, 122}, {45, 96}, {51, 124}, {18, 66}, {61, 111}, {52, 103}, {20, 65}, {11, 92}, {53, 109}, {55, 111}, {54, 110}, {50, 107}, {58, 99}, {62, 100}, {63, 101}, {49, 106}, {30, 64}, {51, 108}, {41, 73}, {42, 74}, {36, 69}, {45, 76}, {38, 71}, {44, 78}, {32, 67}, {37, 70}, {33, 68}, {44, 75}, {167, 192}, {48, 88}, {36, 77}, {32, 79}, {39, 72}, {55, 71}, {33, 83}, {52, 71}, {179, 192}, {57, 74}, {47, 91}, {22, 99}, {62, 72}, {21, 98}, {30, 102}, {37, 93}, {27, 98}, {14, 114}, {37, 89}, {25, 101}, {24, 100}, {12, 114}, {31, 97}, {35, 92}, {47, 80}, {43, 170}, {34, 160}, {46, 173}, {4, 137}, {11, 133}, {17, 129}, {39, 182}, {17, 131}, {14, 151}, {33, 187}, {34, 184}, {5, 158}, {12, 151}, {32, 188}, {33, 191}, {46, 177}, {16, 176}, {97, 192}, {3, 161}, {1, 162}, {13, 169}, {36, 129}, {10, 172}, {35, 133}, {36, 131}, {1, 171}, {39, 137}, {5, 170}, {55, 134}, {57, 136}, {4, 182}, {59, 137}, {10, 190}, {48, 132}, {40, 157}, {43, 158}, {60, 138}, {42, 157}, {16, 168}, {40, 144}, {13, 180}, {3, 185}, {42, 144}, {61, 134}, {56, 135}, {69, 135}, {102, 164}, {91, 159}, {75, 141}, {89, 159}, {110, 167}, {105, 163}, {64, 139}, {109, 166}, {66, 140}, {70, 136}, {106, 165}, {94, 142}, {83, 130}, {85, 132}, {118, 165}, {120, 171}, {86, 130}, {117, 160}, {120, 161}, {96, 187}, {115, 168}, {124, 167}, {97, 188}, {116, 169}, {123, 166}, {94, 128}, {96, 191}, {117, 170}, {32, 192}, {123, 155}, {124, 156}, {118, 151}, {81, 181}, {84, 177}, {127, 154}, {111, 137}, {87, 176}, {116, 158}, {81, 186}, {127, 148}, {88, 180}, {91, 183}, {80, 189}, {98, 143}, {89, 183}, {115, 157}, {82, 189}, {100, 139}, {98, 146}, {88, 169}, {104, 153}, {110, 156}, {99, 144}, {103, 148}, {107, 152}, {101, 145}, {121, 141}, {122, 142}, {80, 165}, {102, 147}, {108, 153}, {109, 155}, {82, 165}, {92, 171}, {84, 173}, {108, 149}, {107, 145}, {122, 128}, {113, 138}, {119, 140}, {99, 159}, {101, 152}, {103, 154}, {104, 149}, {106, 151}, {92, 162}, {87, 168}, {105, 150} }>;

(II) A more general form is to represent the graph as the orbit of {14, 15} under the group generated by the following permutations:

a: (1, 2)(3, 8)(4, 9)(5, 6)(7, 171)(10, 52)(11, 129)(12, 28)(13, 19)(14, 72)(15, 89)(16, 20)(17, 92)(18, 162)(21, 170)(22, 139)(23, 161)(24, 137)(25, 158)(26, 34)(27, 160)(29, 39)(30, 159)(31, 88)(32, 79)(33, 83)(35, 131)(36, 133)(37, 46)(38, 132)(40, 41)(42, 78)(43, 48)(44, 157)(45, 82)(47, 91)(49, 120)(50, 185)(51, 182)(53, 184)(54, 183)(55, 138)(56, 180)(57, 176)(58, 117)(59, 100)(60, 111)(61, 116)(62, 114)(63, 169)(64, 99)(65, 168)(66, 128)(67, 81)(68, 84)(69, 186)(70, 173)(71, 172)(73, 144)(74, 87)(75, 115)(76, 165)(77, 181)(80, 95)(85, 97)(86, 96)(90, 151)(93, 177)(94, 118)(98, 156)(101, 153)(102, 155)(103, 190)(104, 152)(105, 189)(106, 121)(107, 149)(108, 145)(109, 147)(110, 146)(112, 141)(113, 134)(119, 142)(122, 140)(123, 164)(124, 143)(125, 188)(126, 187)(127, 192)(130, 191)(135, 175)(136, 174)(148, 179)(150, 178)(154, 167)(163, 166)
b: (2, 6)(3, 10)(4, 14)(7, 21)(8, 26)(9, 29)(11, 35)(12, 39)(13, 34)(15, 20)(16, 46)(17, 48)(18, 25)(19, 52)(22, 58)(23, 27)(28, 72)(30, 57)(31, 38)(33, 82)(36, 85)(37, 41)(40, 89)(42, 91)(44, 93)(45, 95)(47, 74)(49, 98)(50, 53)(54, 65)(55, 61)(56, 103)(60, 100)(63, 71)(64, 113)(66, 101)(67, 79)(68, 78)(69, 127)(70, 73)(75, 122)(77, 125)(80, 96)(83, 86)(84, 87)(88, 129)(94, 121)(102, 136)(104, 110)(106, 143)(107, 119)(108, 124)(109, 123)(112, 154)(114, 137)(115, 146)(116, 117)(118, 145)(120, 128)(131, 132)(135, 148)(138, 139)(140, 152)(141, 142)(144, 159)(147, 175)(149, 167)(150, 163)(151, 182)(153, 156)(157, 183)(158, 170)(160, 169)(161, 172)(162, 171)(164, 179)(165, 187)(168, 177)(173, 176)(180, 184)(181, 186)(185, 190)(188, 192)(189, 191)
c: (2, 171)(3, 129)(4, 89)(5, 92)(6, 162)(7, 139)(8, 160)(9, 159)(10, 88)(11, 158)(13, 34)(14, 40)(15, 157)(16, 91)(17, 161)(18, 120)(19, 184)(20, 183)(21, 138)(22, 100)(23, 117)(24, 99)(25, 128)(26, 169)(27, 116)(28, 114)(29, 144)(30, 115)(31, 181)(35, 170)(36, 185)(37, 182)(38, 186)(41, 151)(42, 46)(43, 133)(44, 118)(45, 173)(47, 168)(48, 172)(49, 64)(50, 156)(51, 155)(52, 180)(53, 153)(54, 152)(55, 121)(56, 147)(57, 146)(58, 60)(59, 62)(61, 94)(63, 142)(65, 140)(66, 75)(67, 188)(68, 187)(69, 164)(70, 143)(71, 141)(72, 137)(73, 106)(74, 177)(76, 134)(77, 149)(78, 165)(79, 192)(80, 87)(81, 97)(83, 191)(84, 96)(85, 190)(86, 189)(90, 111)(93, 145)(95, 176)(98, 113)(101, 122)(102, 112)(103, 175)(104, 119)(105, 174)(107, 110)(108, 109)(123, 124)(125, 167)(126, 166)(127, 179)(130, 178)(135, 163)(136, 154)(148, 150)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 97 ]
192
-1 2 6 171 162
-2 1 5 7 18
-3 161 8 19 185
-4 137 182 9 20
-5 2 158 170 6
-6 1 25 5 21
-7 22 2 49 17
-8 23 13 3 50
-9 24 4 16 51
-10 190 26 172 52
-11 133 92 27 53
-12 114 28 41 151
-13 169 180 8 19
-14 15 114 29 151
-15 46 14 30 54
-16 176 168 9 20
-17 7 18 129 131
-18 55 66 2 17
-19 56 13 3 63
-20 57 4 16 65
-21 58 48 6 98
-22 99 23 59 7
-23 22 35 49 8
-24 100 60 29 9
-25 101 48 6 61
-26 34 27 53 10
-27 11 58 26 98
-28 12 90 40 62
-29 24 46 14 51
-30 47 102 15 64
-31 56 63 97 43
-32 67 188 79 192
-33 187 68 191 83
-34 26 160 52 184
-35 23 133 92 50
-36 77 69 129 131
-37 89 70 93 39
-38 103 71 97 43
-39 37 137 72 182
-40 144 157 28 41
-41 44 12 40 73
-42 45 144 157 74
-43 158 38 170 31
-44 78 104 41 75
-45 105 96 42 76
-46 177 15 29 173
-47 80 91 30 54
-48 88 132 25 21
-49 23 115 7 106
-50 35 123 8 107
-51 124 29 9 108
-52 34 103 71 10
-53 11 26 119 109
-54 110 122 47 15
-55 111 134 71 18
-56 112 135 19 31
-57 113 136 74 20
-58 99 59 27 21
-59 22 58 114 137
-60 24 116 138 62
-61 111 134 25 63
-62 100 60 28 72
-63 101 61 19 31
-64 73 117 139 30
-65 104 74 20 75
-66 71 18 118 140
-67 77 69 81 32
-68 33 70 93 84
-69 67 112 36 135
-70 68 113 37 136
-71 55 66 38 52
-72 89 90 39 62
-73 78 102 41 64
-74 57 96 42 65
-75 44 141 65 120
-76 121 45 94 95
-77 67 36 119 109
-78 44 82 73 87
-79 81 125 127 32
-80 165 189 47 95
-81 67 79 181 186
-82 165 78 189 86
-83 33 126 84 130
-84 177 68 83 173
-85 88 132 125 127
-86 82 126 130 87
-87 176 78 168 86
-88 48 169 180 85
-89 37 159 72 183
-90 121 28 72 94
-91 47 159 95 183
-92 11 35 171 162
-93 110 122 68 37
-94 90 128 76 142
-95 80 91 105 76
-96 187 45 191 74
-97 188 38 192 31
-98 143 146 27 21
-99 22 144 58 159
-100 24 62 117 139
-101 145 25 63 152
-102 147 73 30 164
-103 154 38 148 52
-104 44 149 65 153
-105 45 95 150 163
-106 165 112 49 151
-107 145 125 50 152
-108 126 149 51 153
-109 77 155 166 53
-110 156 167 93 54
-111 55 114 137 61
-112 56 69 115 106
-113 57 70 116 138
-114 12 111 14 59
-115 112 157 168 49
-116 113 158 169 60
-117 100 170 160 64
-118 66 165 151 119
-119 77 118 140 53
-120 121 171 161 75
-121 90 141 76 120
-122 93 128 54 142
-123 155 166 125 50
-124 156 167 126 51
-125 79 123 85 107
-126 124 83 86 108
-127 154 79 148 85
-128 122 94 172 162
-129 36 17 160 184
-130 83 150 86 163
-131 36 17 161 185
-132 190 48 172 85
-133 11 35 181 186
-134 55 176 61 173
-135 56 178 69 174
-136 57 179 70 175
-137 111 4 59 39
-138 113 60 172 162
-139 100 171 161 64
-140 66 177 183 119
-141 121 180 75 186
-142 122 181 94 184
-143 154 187 182 98
-144 99 155 40 42
-145 187 101 182 107
-146 154 177 183 98
-147 102 181 184 163
-148 178 103 127 174
-149 188 104 108 185
-150 179 105 130 175
-151 12 14 106 118
-152 101 157 168 107
-153 158 169 104 108
-154 143 146 103 127
-155 144 123 159 109
-156 110 124 170 160
-157 115 40 42 152
-158 5 116 43 153
-159 99 89 155 91
-160 34 156 117 129
-161 3 139 120 131
-162 1 92 138 128
-163 147 105 130 164
-164 188 102 163 185
-165 80 82 106 118
-166 123 189 191 109
-167 110 124 190 192
-168 16 115 152 87
-169 88 13 116 153
-170 156 5 117 43
-171 1 92 139 120
-172 132 138 128 10
-173 46 134 84 174
-174 176 135 148 173
-175 136 180 150 186
-176 134 16 174 87
-177 46 146 84 140
-178 189 135 191 148
-179 190 136 192 150
-180 88 13 141 175
-181 133 81 147 142
-182 143 145 4 39
-183 89 91 146 140
-184 34 147 129 142
-185 3 149 131 164
-186 133 81 141 175
-187 33 143 145 96
-188 149 97 32 164
-189 166 178 80 82
-190 132 167 179 10
-191 33 166 178 96
-192 167 179 97 32
0

**************