C4graphConstructions for C4[ 192, 100 ] = UG(ATD[192,141])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 192, 100 ]. See Glossary for some detail.

UG(ATD[192, 141]) = UG(ATD[192, 142]) = UG(ATD[192, 143])

      = UG(ATD[192, 144]) = UG(ATD[192, 145]) = UG(Rmap(384, 49) { 12, 4| 8}_ 12)

      = UG(Rmap(384,127) { 24, 4| 8}_ 24) = MG(Rmap(192,125) { 8, 12| 8}_ 12) = DG(Rmap(192,125) { 8, 12| 8}_ 12)

      = MG(Rmap(192,134) { 8, 12| 8}_ 24) = DG(Rmap(192,134) { 8, 12| 8}_ 24) = DG(Rmap(192,148) { 12, 8| 8}_ 12)

      = DG(Rmap(192,158) { 12, 8| 8}_ 24) = DG(Rmap(192,181) { 8, 24| 8}_ 12) = MG(Rmap(192,187) { 8, 24| 8}_ 24)

      = DG(Rmap(192,187) { 8, 24| 8}_ 24) = DG(Rmap(192,231) { 24, 8| 8}_ 24) = BGCG(R_ 24( 8, 19); K2;{8, 9})

      = BGCG(KE_24(1,11,2,3,11); K1;1) = AT[192, 21]

Cyclic coverings

mod 24:
12345678
1 - 0 0 - 0 22 - - -
2 0 - 1 0 - - 0 -
3 0 23 - - - 5 - 5
4 - 0 - - 14 - 11 10
5 0 2 - - 10 - - - 21
6 - - 19 - - - 2 4 11
7 - 0 - 13 - 20 22 - -
8 - - 19 14 3 13 - -

mod 24:
12345678
1 - 0 1 - - - 0 7 - -
2 0 23 - - 0 - - 0 -
3 - - - - 0 19 - - 0 11
4 - 0 - - 22 12 - 15
5 - - 0 5 2 - - 10 -
6 0 17 - - 12 - - 6 -
7 - 0 - - 14 18 - 13
8 - - 0 13 9 - - 11 -

mod 24:
12345678
1 1 23 0 0 - - - - -
2 0 - 9 0 - 0 - -
3 0 15 - - - - 7 7
4 - 0 - - 18 3 20 -
5 - - - 6 1 23 - 11 -
6 - 0 - 21 - 11 13 - -
7 - - 17 4 13 - - 21
8 - - 17 - - - 3 11 13