C4graphConstructions for C4[ 192, 101 ] = UG(ATD[192,146])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 192, 101 ]. See Glossary for some detail.

UG(ATD[192, 146]) = UG(ATD[192, 147]) = UG(ATD[192, 148])

      = UG(ATD[192, 149]) = UG(ATD[192, 150]) = UG(Rmap(384,130) { 24, 4| 8}_ 24)

      = UG(Rmap(384,134) { 24, 4| 8}_ 24) = MG(Rmap(192,185) { 8, 24| 8}_ 24) = DG(Rmap(192,185) { 8, 24| 8}_ 24)

      = MG(Rmap(192,189) { 8, 24| 8}_ 24) = DG(Rmap(192,189) { 8, 24| 8}_ 24) = MG(Rmap(192,190) { 8, 24| 8}_ 24)

      = DG(Rmap(192,190) { 8, 24| 8}_ 24) = MG(Rmap(192,195) { 8, 24| 8}_ 24) = DG(Rmap(192,195) { 8, 24| 8}_ 24)

      = DG(Rmap(192,222) { 24, 8| 8}_ 24) = DG(Rmap(192,223) { 24, 8| 8}_ 24) = DG(Rmap(192,229) { 24, 8| 8}_ 24)

      = DG(Rmap(192,232) { 24, 8| 8}_ 24) = BGCG(R_ 24( 20, 7); K2;{1, 2}) = BGCG(KE_24(1,11,2,3,11); K1;6)

      = AT[192, 19]

Cyclic coverings

mod 24:
12345678
1 1 23 0 - - 0 - - -
2 0 - 0 - - - 0 14 -
3 - 0 - 6 8 - - 3 -
4 - - 16 18 - 9 0 - -
5 0 - - 15 - 4 18 - -
6 - - - 0 6 20 - - 2
7 - 0 10 21 - - - - 22
8 - - - - - 22 2 1 23

mod 24:
12345678
1 1 23 0 - - - 0 - -
2 0 - 0 0 - 11 - -
3 - 0 - - 16 - 16 16
4 - 0 - - - 20 - 4 14
5 - - 8 - 11 13 - 23 -
6 0 13 - 4 - - 9 -
7 - - 8 - 1 15 - 21
8 - - 8 10 20 - - 3 -

mod 24:
12345678
1 - 0 1 - 0 5 - - - -
2 0 23 - 0 - - - 0 -
3 - 0 - 11 8 - - 8
4 0 19 - 13 - - - 7 -
5 - - 16 - - 0 11 14 -
6 - - - - 0 13 - - 12 19
7 - 0 - 17 10 - - 4
8 - - 16 - - 5 12 20 -