C4graphGraph forms for C4 [ 192, 102 ] = UG(ATD[192,151])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 102 ] = UG(ATD[192,151]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {14, 15}, {186, 187}, {166, 167}, {90, 91}, {132, 133}, {1, 2}, {3, 7}, {185, 189}, {2, 7}, {171, 174}, {41, 44}, {97, 100}, {106, 108}, {1, 6}, {42, 45}, {88, 95}, {98, 101}, {151, 159}, {163, 170}, {80, 90}, {163, 169}, {132, 142}, {3, 8}, {32, 43}, {36, 40}, {177, 189}, {160, 172}, {66, 78}, {39, 43}, {4, 9}, {16, 30}, {32, 46}, {17, 31}, {135, 137}, {144, 158}, {5, 10}, {2, 18}, {6, 22}, {5, 21}, {4, 20}, {3, 19}, {9, 24}, {79, 94}, {64, 81}, {7, 21}, {15, 29}, {14, 28}, {11, 25}, {45, 62}, {173, 190}, {169, 186}, {166, 181}, {165, 182}, {12, 24}, {171, 191}, {75, 95}, {133, 145}, {1, 23}, {13, 27}, {12, 26}, {5, 29}, {37, 60}, {160, 185}, {66, 91}, {129, 152}, {143, 150}, {162, 184}, {13, 22}, {98, 121}, {10, 22}, {160, 188}, {33, 61}, {32, 60}, {11, 22}, {169, 180}, {38, 59}, {111, 114}, {64, 94}, {162, 188}, {8, 23}, {90, 122}, {92, 124}, {93, 125}, {154, 187}, {30, 60}, {155, 185}, {69, 103}, {129, 163}, {72, 107}, {159, 188}, {155, 184}, {74, 105}, {141, 174}, {31, 59}, {67, 103}, {139, 175}, {7, 34}, {26, 63}, {27, 61}, {145, 183}, {25, 62}, {148, 179}, {149, 189}, {16, 57}, {20, 61}, {18, 59}, {17, 58}, {156, 183}, {154, 177}, {138, 161}, {11, 39}, {159, 179}, {71, 106}, {154, 183}, {23, 57}, {80, 126}, {19, 60}, {153, 182}, {24, 55}, {77, 125}, {84, 100}, {83, 99}, {17, 32}, {88, 105}, {133, 180}, {9, 59}, {153, 171}, {79, 124}, {80, 99}, {134, 181}, {151, 164}, {6, 50}, {26, 47}, {29, 40}, {151, 161}, {15, 56}, {81, 102}, {77, 122}, {76, 123}, {5, 61}, {74, 114}, {67, 123}, {3, 58}, {70, 127}, {89, 96}, {150, 175}, {12, 54}, {13, 55}, {140, 182}, {4, 63}, {69, 126}, {8, 51}, {148, 175}, {84, 104}, {9, 52}, {153, 164}, {138, 180}, {152, 166}, {1, 62}, {158, 161}, {157, 162}, {84, 107}, {10, 53}, {45, 108}, {35, 97}, {23, 82}, {13, 75}, {56, 127}, {50, 122}, {54, 126}, {53, 125}, {52, 124}, {51, 123}, {24, 81}, {48, 121}, {14, 68}, {63, 116}, {140, 192}, {42, 100}, {143, 192}, {37, 116}, {38, 117}, {44, 127}, {16, 68}, {25, 76}, {36, 115}, {47, 120}, {44, 118}, {45, 119}, {11, 87}, {28, 64}, {27, 70}, {40, 117}, {62, 96}, {29, 66}, {58, 101}, {33, 65}, {49, 81}, {48, 80}, {42, 74}, {41, 73}, {40, 72}, {39, 71}, {38, 70}, {37, 69}, {36, 68}, {35, 67}, {34, 66}, {26, 123}, {47, 78}, {43, 74}, {30, 125}, {46, 77}, {35, 64}, {28, 122}, {44, 75}, {53, 92}, {28, 112}, {31, 114}, {16, 126}, {51, 93}, {17, 127}, {30, 113}, {8, 120}, {33, 83}, {38, 84}, {12, 121}, {184, 192}, {31, 102}, {46, 87}, {20, 110}, {49, 75}, {21, 111}, {34, 94}, {49, 77}, {43, 86}, {2, 124}, {19, 109}, {18, 108}, {48, 79}, {21, 149}, {56, 184}, {52, 183}, {4, 128}, {54, 191}, {25, 147}, {27, 145}, {55, 186}, {14, 129}, {50, 189}, {56, 170}, {57, 171}, {39, 180}, {50, 167}, {36, 178}, {48, 168}, {58, 162}, {41, 181}, {53, 168}, {46, 176}, {57, 167}, {94, 192}, {54, 169}, {34, 131}, {51, 146}, {41, 136}, {49, 146}, {55, 148}, {19, 182}, {10, 172}, {15, 168}, {47, 135}, {20, 190}, {42, 128}, {37, 136}, {63, 144}, {18, 160}, {6, 179}, {33, 155}, {52, 142}, {35, 156}, {68, 132}, {65, 128}, {90, 155}, {108, 173}, {67, 129}, {112, 179}, {113, 178}, {82, 150}, {96, 164}, {110, 170}, {71, 130}, {93, 152}, {101, 173}, {102, 174}, {119, 191}, {115, 186}, {72, 130}, {73, 131}, {88, 147}, {92, 151}, {109, 166}, {69, 137}, {85, 153}, {117, 185}, {87, 154}, {65, 143}, {117, 187}, {70, 137}, {88, 136}, {83, 130}, {86, 135}, {111, 190}, {118, 167}, {76, 158}, {91, 137}, {78, 157}, {85, 134}, {95, 138}, {110, 187}, {82, 132}, {85, 131}, {83, 133}, {104, 190}, {89, 142}, {89, 128}, {87, 141}, {105, 178}, {113, 172}, {97, 191}, {110, 176}, {116, 170}, {118, 168}, {79, 175}, {115, 147}, {76, 174}, {106, 136}, {86, 181}, {100, 135}, {73, 173}, {121, 157}, {102, 131}, {119, 146}, {99, 139}, {85, 188}, {71, 172}, {78, 165}, {91, 176}, {96, 139}, {114, 158}, {72, 165}, {92, 177}, {97, 140}, {112, 157}, {95, 177}, {98, 141}, {109, 130}, {111, 159}, {65, 178}, {82, 161}, {103, 147}, {104, 156}, {86, 163}, {103, 145}, {101, 146}, {113, 134}, {120, 143}, {109, 149}, {115, 139}, {116, 140}, {73, 176}, {93, 164}, {106, 144}, {99, 152}, {107, 144}, {118, 141}, {89, 165}, {104, 148}, {105, 149}, {107, 150}, {119, 138}, {98, 156}, {112, 142}, {120, 134} }>;

(II) A more general form is to represent the graph as the orbit of {14, 15} under the group generated by the following permutations:

a: (2, 23)(4, 14)(5, 123)(6, 62)(7, 8)(9, 68)(10, 76)(12, 40)(13, 147)(15, 63)(16, 59)(17, 60)(18, 57)(19, 58)(20, 129)(21, 51)(22, 25)(24, 36)(26, 29)(27, 103)(28, 128)(30, 31)(33, 35)(34, 120)(37, 127)(38, 126)(39, 87)(42, 122)(43, 46)(44, 136)(45, 50)(47, 66)(48, 107)(49, 105)(52, 132)(53, 158)(54, 117)(55, 115)(56, 116)(61, 67)(64, 65)(69, 70)(71, 141)(72, 121)(73, 181)(74, 77)(75, 88)(79, 150)(80, 84)(81, 178)(82, 124)(83, 156)(86, 176)(89, 112)(90, 100)(91, 135)(92, 161)(93, 111)(94, 143)(96, 179)(97, 155)(98, 130)(99, 104)(101, 109)(102, 113)(106, 118)(108, 167)(110, 163)(114, 125)(119, 189)(131, 134)(133, 183)(138, 177)(139, 148)(140, 184)(144, 168)(146, 149)(152, 190)(153, 188)(154, 180)(157, 165)(159, 164)(160, 171)(162, 182)(166, 173)(169, 187)(172, 174)(185, 191)
b: (1, 2, 124, 92, 151, 159, 179, 6)(3, 9, 168, 138, 85, 104, 122, 25)(4, 15, 180, 134, 84, 90, 147, 19)(5, 132, 172, 150, 185, 139, 149, 89)(7, 52, 53, 161, 188, 148, 50, 62)(8, 59, 48, 95, 153, 190, 28, 11)(10, 82, 160, 175, 189, 96, 21, 142)(12, 44, 191, 73, 35, 46, 123, 17)(13, 57, 108, 94, 154, 93, 114, 157)(14, 39, 120, 38, 80, 88, 182, 20)(16, 106, 192, 187, 152, 74, 78, 27)(18, 79, 177, 164, 111, 112, 22, 23)(24, 118, 119, 131, 156, 77, 76, 58)(26, 127, 54, 41, 97, 176, 67, 32)(29, 133, 113, 107, 155, 115, 109, 128)(30, 144, 184, 186, 166, 42, 66, 145)(31, 121, 75, 171, 173, 64, 87, 51)(33, 36, 130, 65, 40, 83, 178, 72)(34, 183, 125, 158, 162, 55, 167, 45)(37, 116, 170, 163, 86, 135, 137, 69)(43, 47, 70, 126, 136, 140, 110, 129)(49, 174, 101, 81, 141, 146, 102, 98)(56, 169, 181, 100, 91, 103, 60, 63)(61, 68, 71, 143, 117, 99, 105, 165)
c: (2, 6)(3, 11)(4, 14)(7, 22)(8, 25)(9, 28)(10, 21)(12, 35)(13, 34)(15, 20)(16, 42)(17, 46)(18, 50)(19, 39)(23, 62)(24, 64)(26, 67)(27, 66)(29, 61)(30, 74)(31, 77)(33, 40)(36, 65)(37, 86)(38, 90)(43, 60)(44, 73)(45, 57)(47, 103)(48, 104)(49, 102)(51, 76)(52, 112)(53, 111)(54, 97)(55, 94)(56, 110)(58, 87)(59, 122)(63, 129)(68, 128)(69, 135)(70, 91)(71, 109)(72, 83)(75, 131)(78, 145)(79, 148)(80, 84)(82, 96)(85, 95)(88, 134)(89, 132)(92, 159)(93, 158)(99, 107)(100, 126)(101, 141)(105, 113)(106, 166)(108, 167)(114, 125)(115, 143)(116, 163)(117, 155)(118, 173)(119, 171)(120, 147)(121, 156)(124, 179)(127, 176)(133, 165)(136, 181)(138, 153)(139, 150)(140, 169)(144, 152)(146, 174)(149, 172)(154, 162)(157, 183)(160, 189)(161, 164)(168, 190)(177, 188)(180, 182)(184, 187)(186, 192)
d: (3, 108)(4, 192)(5, 185)(7, 18)(8, 45)(9, 94)(10, 189)(11, 167)(12, 35)(13, 122)(14, 186)(15, 187)(16, 147)(17, 73)(19, 106)(20, 184)(21, 160)(22, 50)(23, 62)(24, 64)(25, 57)(26, 97)(27, 90)(28, 55)(29, 117)(30, 88)(31, 131)(32, 41)(34, 59)(38, 66)(39, 166)(42, 120)(43, 181)(44, 46)(47, 100)(48, 183)(51, 119)(52, 79)(53, 177)(54, 67)(56, 110)(58, 173)(60, 136)(61, 155)(63, 140)(68, 115)(70, 91)(71, 109)(74, 134)(75, 77)(76, 171)(78, 84)(80, 145)(82, 96)(85, 114)(87, 118)(89, 150)(93, 138)(95, 125)(99, 133)(103, 126)(104, 157)(105, 113)(107, 165)(111, 188)(112, 148)(121, 156)(123, 191)(127, 176)(128, 143)(129, 169)(132, 139)(142, 175)(144, 182)(149, 172)(152, 180)(153, 158)(154, 168)(161, 164)(162, 190)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 102 ]
192
-1 23 2 6 62
-2 1 124 7 18
-3 58 7 8 19
-4 128 63 9 20
-5 61 29 10 21
-6 22 1 179 50
-7 34 2 3 21
-8 23 3 51 120
-9 24 4 59 52
-10 22 5 172 53
-11 22 25 39 87
-12 121 24 26 54
-13 22 55 27 75
-14 68 15 28 129
-15 56 14 168 29
-16 57 68 126 30
-17 58 127 31 32
-18 2 59 160 108
-19 3 60 182 109
-20 110 190 4 61
-21 111 5 149 7
-22 11 13 6 10
-23 1 57 82 8
-24 55 12 81 9
-25 11 147 62 76
-26 12 123 47 63
-27 13 145 70 61
-28 122 112 14 64
-29 66 15 5 40
-30 113 125 16 60
-31 102 59 114 17
-32 46 60 17 43
-33 155 61 83 65
-34 66 94 7 131
-35 67 156 64 97
-36 68 178 115 40
-37 69 136 60 116
-38 59 70 84 117
-39 11 180 71 43
-40 36 72 29 117
-41 44 136 181 73
-42 45 100 128 74
-43 39 74 86 32
-44 127 41 118 75
-45 62 42 108 119
-46 77 176 32 87
-47 78 135 26 120
-48 121 79 80 168
-49 77 146 81 75
-50 122 167 189 6
-51 123 146 93 8
-52 124 183 9 142
-53 168 92 125 10
-54 12 169 191 126
-55 13 24 148 186
-56 15 170 127 184
-57 23 167 16 171
-58 101 3 17 162
-59 38 18 9 31
-60 37 19 30 32
-61 33 5 27 20
-62 1 45 25 96
-63 144 4 26 116
-64 35 81 28 94
-65 33 143 178 128
-66 34 78 91 29
-67 35 123 103 129
-68 132 14 36 16
-69 37 103 126 137
-70 27 38 137 127
-71 39 106 172 130
-72 165 40 107 130
-73 176 41 173 131
-74 114 105 42 43
-75 44 13 49 95
-76 123 25 158 174
-77 122 46 125 49
-78 66 165 47 157
-79 124 48 94 175
-80 99 90 48 126
-81 24 102 49 64
-82 132 23 150 161
-83 33 99 133 130
-84 100 38 104 107
-85 188 134 131 153
-86 135 181 163 43
-87 11 154 46 141
-88 136 147 105 95
-89 165 128 96 142
-90 122 155 80 91
-91 66 176 90 137
-92 177 124 151 53
-93 125 51 152 164
-94 34 79 192 64
-95 88 177 138 75
-96 89 62 139 164
-97 100 35 191 140
-98 121 101 156 141
-99 80 83 139 152
-100 135 84 42 97
-101 58 146 173 98
-102 81 31 174 131
-103 67 145 69 147
-104 156 190 148 84
-105 88 178 149 74
-106 144 136 71 108
-107 144 72 84 150
-108 45 18 106 173
-109 166 149 19 130
-110 176 187 170 20
-111 190 114 159 21
-112 157 179 28 142
-113 134 178 172 30
-114 111 158 74 31
-115 36 147 139 186
-116 37 170 63 140
-117 187 38 40 185
-118 44 167 168 141
-119 45 146 191 138
-120 143 134 47 8
-121 12 157 48 98
-122 77 90 28 50
-123 67 26 51 76
-124 2 79 92 52
-125 77 93 30 53
-126 69 80 16 54
-127 44 56 70 17
-128 89 4 42 65
-129 67 14 152 163
-130 71 72 83 109
-131 34 102 73 85
-132 133 68 82 142
-133 132 145 180 83
-134 113 181 85 120
-135 100 47 137 86
-136 88 37 106 41
-137 69 91 135 70
-138 180 95 161 119
-139 99 115 96 175
-140 192 116 182 97
-141 118 174 87 98
-142 132 89 112 52
-143 192 150 65 120
-144 158 106 63 107
-145 133 103 27 183
-146 101 49 51 119
-147 88 25 103 115
-148 55 179 104 175
-149 189 105 21 109
-150 143 82 107 175
-151 92 159 161 164
-152 99 166 93 129
-153 171 182 85 164
-154 187 177 183 87
-155 33 90 184 185
-156 35 104 183 98
-157 121 78 112 162
-158 144 114 161 76
-159 111 188 179 151
-160 188 18 172 185
-161 158 82 138 151
-162 188 58 157 184
-163 169 170 129 86
-164 93 96 151 153
-165 78 89 72 182
-166 167 181 152 109
-167 166 57 50 118
-168 15 48 118 53
-169 180 163 54 186
-170 110 56 116 163
-171 57 191 174 153
-172 113 71 160 10
-173 101 190 73 108
-174 102 171 141 76
-175 79 148 139 150
-176 110 46 91 73
-177 154 189 92 95
-178 36 113 105 65
-179 112 148 159 6
-180 133 169 39 138
-181 166 134 41 86
-182 165 19 140 153
-183 154 145 156 52
-184 56 155 192 162
-185 155 189 160 117
-186 55 187 169 115
-187 110 154 117 186
-188 159 160 85 162
-189 177 50 149 185
-190 111 104 173 20
-191 171 97 119 54
-192 143 94 140 184
0

**************