[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 192, 103 ] =
UG(ATD[192,153]).
(I) Following is a form readable by MAGMA:
g:=Graph<192|{ {112, 113}, {164, 165}, {132, 133}, {1, 3}, {72, 74}, {1, 5},
{138, 142}, {19, 22}, {27, 30}, {104, 109}, {1, 7}, {187, 189}, {185, 191}, {81,
87}, {90, 92}, {113, 119}, {5, 13}, {160, 168}, {38, 46}, {1, 11}, {149, 159},
{69, 79}, {3, 9}, {39, 44}, {103, 108}, {3, 15}, {150, 154}, {51, 63}, {55, 58},
{70, 72}, {80, 94}, {68, 75}, {177, 190}, {82, 93}, {101, 106}, {129, 142}, {11,
27}, {72, 88}, {13, 29}, {136, 153}, {169, 184}, {32, 51}, {168, 187}, {163,
176}, {33, 50}, {3, 23}, {162, 182}, {36, 48}, {7, 19}, {5, 17}, {100, 112},
{128, 148}, {78, 91}, {133, 144}, {109, 123}, {128, 151}, {7, 31}, {97, 121},
{134, 158}, {111, 118}, {141, 148}, {73, 82}, {166, 189}, {110, 117}, {138,
145}, {5, 25}, {9, 21}, {161, 188}, {66, 92}, {107, 117}, {75, 84}, {160, 191},
{90, 122}, {141, 173}, {148, 181}, {155, 186}, {23, 53}, {76, 110}, {144, 178},
{10, 41}, {150, 181}, {16, 52}, {29, 57}, {91, 127}, {25, 60}, {71, 98}, {94,
123}, {148, 177}, {9, 47}, {81, 119}, {145, 183}, {85, 114}, {136, 175}, {9,
33}, {158, 182}, {156, 180}, {65, 105}, {15, 39}, {13, 37}, {11, 35}, {7, 45},
{21, 63}, {84, 126}, {144, 186}, {89, 114}, {151, 188}, {129, 170}, {17, 61},
{20, 56}, {94, 114}, {130, 175}, {25, 55}, {136, 166}, {26, 53}, {27, 52}, {68,
116}, {19, 34}, {86, 103}, {146, 163}, {140, 190}, {15, 59}, {152, 172}, {77,
121}, {28, 40}, {140, 184}, {144, 165}, {131, 181}, {17, 41}, {64, 120}, {26,
34}, {16, 41}, {11, 49}, {70, 124}, {89, 99}, {92, 102}, {14, 53}, {153, 162},
{70, 122}, {146, 174}, {73, 116}, {13, 51}, {21, 43}, {74, 117}, {78, 113}, {40,
104}, {29, 95}, {42, 104}, {14, 74}, {54, 114}, {18, 86}, {17, 87}, {57, 127},
{49, 119}, {45, 107}, {134, 192}, {8, 79}, {52, 115}, {22, 81}, {18, 90}, {19,
89}, {48, 122}, {23, 93}, {4, 79}, {54, 125}, {12, 64}, {55, 123}, {53, 121},
{47, 99}, {45, 97}, {35, 111}, {21, 91}, {41, 121}, {57, 107}, {50, 97}, {37,
113}, {51, 103}, {49, 101}, {58, 111}, {23, 65}, {46, 120}, {40, 126}, {31, 73},
{55, 96}, {61, 106}, {38, 126}, {20, 77}, {15, 85}, {62, 100}, {47, 117}, {29,
71}, {25, 67}, {24, 68}, {38, 122}, {24, 70}, {27, 69}, {49, 110}, {62, 95},
{63, 94}, {30, 125}, {6, 99}, {22, 115}, {39, 64}, {8, 96}, {43, 67}, {169,
192}, {33, 75}, {37, 79}, {10, 102}, {57, 85}, {32, 77}, {35, 77}, {12, 99},
{12, 124}, {35, 83}, {6, 116}, {31, 109}, {56, 76}, {30, 105}, {43, 83}, {54,
76}, {28, 97}, {33, 95}, {32, 160}, {22, 151}, {58, 187}, {6, 130}, {30, 155},
{44, 169}, {24, 159}, {2, 139}, {58, 179}, {46, 165}, {31, 145}, {36, 170}, {61,
173}, {42, 184}, {48, 162}, {46, 188}, {32, 182}, {52, 163}, {4, 156}, {44,
180}, {18, 139}, {28, 134}, {2, 159}, {60, 161}, {50, 175}, {8, 150}, {54, 168},
{59, 164}, {18, 178}, {56, 152}, {45, 141}, {20, 180}, {10, 171}, {44, 141},
{36, 133}, {34, 131}, {14, 172}, {24, 186}, {42, 137}, {38, 130}, {16, 181},
{56, 157}, {47, 138}, {4, 162}, {59, 157}, {2, 170}, {48, 152}, {26, 176}, {16,
187}, {62, 149}, {108, 192}, {28, 179}, {40, 135}, {12, 189}, {20, 166}, {43,
153}, {39, 149}, {10, 185}, {26, 169}, {61, 136}, {36, 146}, {37, 147}, {62,
137}, {60, 132}, {6, 191}, {34, 155}, {4, 190}, {63, 133}, {59, 129}, {60, 135},
{42, 151}, {2, 188}, {50, 140}, {14, 177}, {83, 147}, {115, 178}, {111, 173},
{93, 158}, {91, 159}, {65, 135}, {106, 172}, {118, 176}, {116, 179}, {8, 192},
{103, 175}, {67, 137}, {86, 156}, {87, 157}, {98, 168}, {106, 160}, {81, 154},
{96, 171}, {108, 167}, {69, 137}, {71, 139}, {90, 150}, {124, 176}, {65, 143},
{118, 185}, {119, 167}, {112, 161}, {104, 186}, {100, 177}, {126, 171}, {120,
174}, {125, 170}, {69, 157}, {87, 143}, {88, 131}, {83, 143}, {71, 153}, {80,
142}, {82, 140}, {89, 135}, {66, 163}, {127, 158}, {85, 183}, {100, 134}, {102,
132}, {84, 183}, {67, 167}, {101, 129}, {107, 143}, {66, 167}, {98, 132}, {88,
191}, {125, 154}, {73, 161}, {98, 138}, {80, 185}, {84, 189}, {105, 128}, {68,
174}, {78, 164}, {112, 155}, {64, 172}, {118, 154}, {74, 164}, {88, 183}, {92,
179}, {93, 173}, {123, 139}, {96, 146}, {108, 152}, {102, 147}, {78, 184}, {80,
166}, {86, 174}, {105, 145}, {82, 171}, {101, 156}, {95, 165}, {110, 149}, {120,
131}, {66, 190}, {72, 180}, {124, 128}, {75, 182}, {115, 142}, {127, 130}, {76,
178}, {109, 147} }>;
(II) A more general form is to represent the graph as the orbit of {112, 113}
under the group generated by the following permutations:
a: (3, 5)(4, 6)(7, 11)(8, 12)(9, 13)(10, 14)(15, 25)(16, 26)(17, 23)(18, 24)(19,
27)(20, 28)(21, 29)(22, 30)(31, 49)(32, 50)(33, 51)(34, 52)(35, 45)(36, 46)(37,
47)(38, 48)(39, 55)(40, 56)(41, 53)(42, 54)(43, 57)(44, 58)(59, 60)(61, 93)(62,
94)(63, 95)(64, 96)(65, 87)(66, 88)(67, 85)(68, 86)(69, 89)(70, 90)(71, 91)(72,
92)(73, 101)(74, 102)(75, 103)(76, 104)(77, 97)(78, 98)(79, 99)(80, 100)(81,
105)(82, 106)(83, 107)(84, 108)(109, 110)(111, 141)(112, 142)(113, 138)(114,
137)(115, 155)(116, 156)(117, 147)(118, 148)(119, 145)(120, 146)(123, 149)(124,
150)(125, 151)(126, 152)(127, 153)(128, 154)(129, 161)(130, 162)(131, 163)(132,
164)(133, 165)(134, 166)(135, 157)(136, 158)(139, 159)(140, 160)(167, 183)(168,
184)(169, 187)(170, 188)(171, 172)(175, 182)(176, 181)(177, 185)(178, 186)(179,
180)(189, 192)(190, 191) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 144)(3, 7)(4, 66)(6, 84)(8, 108)(9, 31)(10, 136)(12, 88)(13, 25)(14,
148)(15, 19)(16, 106)(18, 36)(20, 118)(21, 109)(22, 59)(23, 45)(26, 44)(27,
49)(28, 158)(29, 60)(30, 110)(32, 58)(33, 73)(34, 39)(37, 67)(40, 127)(41,
61)(42, 78)(43, 147)(47, 145)(48, 90)(50, 82)(51, 55)(52, 101)(53, 141)(56,
154)(57, 135)(62, 112)(63, 123)(64, 131)(65, 107)(69, 119)(71, 132)(72, 124)(74,
128)(75, 116)(76, 125)(77, 111)(79, 167)(81, 157)(85, 89)(86, 146)(91, 104)(92,
162)(93, 97)(95, 161)(96, 103)(99, 183)(102, 153)(105, 117)(113, 137)(115,
129)(121, 173)(126, 130)(133, 139)(149, 155)(150, 152)(151, 164)(156, 163)(159,
186)(160, 187)(165, 188)(166, 185)(170, 178)(171, 175)(172, 181)(176, 180)(179,
182)(189, 191)
c: (1, 3, 9, 21, 43, 83, 143, 107, 57, 29, 13, 5)(2, 4, 10, 22, 44, 84, 144,
108, 58, 30, 14, 6)(7, 15, 33, 63, 67, 35, 65, 117, 127, 71, 37, 17)(8, 16, 34,
64, 68, 36, 66, 118, 128, 72, 38, 18)(11, 23, 47, 91, 153, 147, 87, 45, 85, 95,
51, 25)(12, 24, 48, 92, 154, 148, 88, 46, 86, 96, 52, 26)(19, 39, 75, 133, 167,
111, 105, 74, 130, 139, 79, 41)(20, 40, 76, 134, 168, 112, 106, 73, 129, 140,
80, 42)(27, 53, 99, 159, 162, 102, 81, 141, 183, 165, 103, 55)(28, 54, 100, 160,
161, 101, 82, 142, 184, 166, 104, 56)(31, 59, 50, 94, 137, 77, 135, 110, 158,
98, 113, 61)(32, 60, 49, 93, 138, 78, 136, 109, 157, 97, 114, 62)(69, 121, 89,
149, 182, 132, 119, 173, 145, 164, 175, 123)(70, 122, 90, 150, 181, 131, 120,
174, 146, 163, 176, 124)(115, 169, 189, 186, 152, 179, 125, 177, 191, 188, 156,
171)(116, 170, 190, 185, 151, 180, 126, 178, 192, 187, 155, 172)
d: (1, 2)(3, 139)(4, 140)(5, 159)(6, 160)(7, 170)(8, 169)(9, 71)(10, 72)(11,
188)(12, 187)(13, 91)(14, 92)(15, 123)(16, 124)(17, 24)(18, 23)(19, 125)(20,
126)(21, 29)(22, 30)(25, 149)(26, 150)(27, 151)(28, 152)(31, 129)(32, 130)(33,
153)(34, 154)(35, 46)(36, 45)(37, 78)(38, 77)(39, 55)(40, 56)(41, 70)(42,
69)(43, 95)(44, 96)(47, 98)(48, 97)(49, 161)(50, 162)(51, 127)(52, 128)(53,
90)(54, 89)(57, 63)(58, 64)(59, 109)(60, 110)(61, 68)(62, 67)(65, 178)(66,
177)(73, 101)(74, 102)(75, 136)(76, 135)(79, 184)(80, 183)(81, 155)(82, 156)(83,
165)(84, 166)(85, 94)(86, 93)(87, 186)(88, 185)(99, 168)(100, 167)(103,
158)(104, 157)(105, 115)(106, 116)(107, 133)(108, 134)(111, 120)(112, 119)(117,
132)(118, 131)(121, 122)(141, 146)(142, 145)(143, 144)(147, 164)(148, 163)(171,
180)(172, 179)(173, 174)(175, 182)(176, 181)
C4[ 192, 103 ]
192
-1 11 3 5 7
-2 188 159 170 139
-3 1 23 15 9
-4 79 156 190 162
-5 1 13 25 17
-6 99 191 116 130
-7 1 45 19 31
-8 79 192 150 96
-9 33 3 47 21
-10 102 171 41 185
-11 1 35 27 49
-12 99 189 124 64
-13 37 5 29 51
-14 177 172 74 53
-15 3 59 39 85
-16 187 181 41 52
-17 5 61 41 87
-18 90 178 139 86
-19 22 34 89 7
-20 77 56 166 180
-21 91 63 9 43
-22 81 115 19 151
-23 3 93 53 65
-24 68 70 159 186
-25 55 67 5 60
-26 176 34 169 53
-27 11 69 30 52
-28 134 179 40 97
-29 13 57 71 95
-30 155 125 27 105
-31 145 7 73 109
-32 77 160 182 51
-33 50 95 9 75
-34 155 26 19 131
-35 11 77 111 83
-36 133 146 48 170
-37 13 79 113 147
-38 122 46 126 130
-39 44 15 149 64
-40 135 104 126 28
-41 121 16 17 10
-42 104 137 151 184
-43 67 83 21 153
-44 169 180 39 141
-45 7 107 97 141
-46 165 188 38 120
-47 99 138 117 9
-48 122 36 162 152
-49 11 110 101 119
-50 33 140 97 175
-51 13 103 63 32
-52 16 27 115 163
-53 121 23 14 26
-54 168 114 125 76
-55 123 25 58 96
-56 157 20 152 76
-57 127 29 85 107
-58 55 187 111 179
-59 157 15 129 164
-60 132 25 135 161
-61 136 17 106 173
-62 100 137 149 95
-63 133 94 51 21
-64 12 39 172 120
-65 143 23 135 105
-66 167 190 92 163
-67 167 25 137 43
-68 24 116 75 174
-69 79 157 27 137
-70 122 24 124 72
-71 29 139 98 153
-72 88 70 180 74
-73 82 116 161 31
-74 14 72 117 164
-75 33 68 182 84
-76 110 56 178 54
-77 121 35 20 32
-78 91 113 184 164
-79 69 4 37 8
-80 166 94 185 142
-81 22 154 119 87
-82 93 171 73 140
-83 143 35 147 43
-84 189 126 183 75
-85 57 15 114 183
-86 156 103 18 174
-87 143 157 81 17
-88 191 72 183 131
-89 99 135 114 19
-90 122 92 18 150
-91 78 159 127 21
-92 66 90 102 179
-93 23 158 82 173
-94 123 80 114 63
-95 33 165 29 62
-96 55 146 171 8
-97 121 45 28 50
-98 132 168 71 138
-99 12 89 47 6
-100 177 112 134 62
-101 156 49 106 129
-102 132 92 147 10
-103 51 86 108 175
-104 40 42 109 186
-105 145 128 30 65
-106 101 61 160 172
-107 143 45 57 117
-108 167 103 192 152
-109 123 147 104 31
-110 49 149 117 76
-111 35 58 118 173
-112 100 155 113 161
-113 78 112 37 119
-114 89 94 85 54
-115 22 178 52 142
-116 68 179 6 73
-117 110 47 74 107
-118 154 176 111 185
-119 167 113 81 49
-120 46 64 174 131
-121 77 41 53 97
-122 90 48 70 38
-123 55 94 139 109
-124 176 12 70 128
-125 154 170 30 54
-126 38 171 40 84
-127 57 91 158 130
-128 124 148 105 151
-129 101 59 170 142
-130 38 6 127 175
-131 88 34 181 120
-132 133 102 60 98
-133 132 144 36 63
-134 100 158 192 28
-135 89 60 40 65
-136 166 61 153 175
-137 67 69 62 42
-138 145 47 98 142
-139 2 123 71 18
-140 190 82 50 184
-141 44 45 148 173
-142 80 115 138 129
-143 83 107 65 87
-144 165 133 178 186
-145 105 138 183 31
-146 36 96 163 174
-147 102 37 83 109
-148 177 181 128 141
-149 110 159 39 62
-150 154 90 181 8
-151 22 188 128 42
-152 56 48 172 108
-153 136 71 162 43
-154 81 125 150 118
-155 34 112 30 186
-156 101 4 180 86
-157 56 69 59 87
-158 134 93 127 182
-159 2 24 91 149
-160 168 191 106 32
-161 188 112 60 73
-162 4 48 182 153
-163 66 176 146 52
-164 165 78 59 74
-165 144 46 95 164
-166 189 80 136 20
-167 66 67 108 119
-168 187 160 54 98
-169 44 26 192 184
-170 2 36 125 129
-171 82 126 96 10
-172 14 106 64 152
-173 111 93 61 141
-174 68 146 86 120
-175 103 136 50 130
-176 124 26 118 163
-177 100 14 190 148
-178 144 115 18 76
-179 58 92 28 116
-180 44 156 72 20
-181 16 148 150 131
-182 158 162 75 32
-183 88 145 84 85
-184 78 169 140 42
-185 80 191 118 10
-186 144 155 24 104
-187 189 58 168 16
-188 2 46 161 151
-189 187 12 166 84
-190 66 177 4 140
-191 88 6 160 185
-192 134 169 8 108
0