C4graphGraph forms for C4 [ 192, 107 ] = UG(ATD[192,163])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 192, 107 ] = UG(ATD[192,163]).

(I) Following is a form readable by MAGMA:

g:=Graph<192|{ {130, 131}, {85, 87}, {1, 2}, {156, 159}, {149, 150}, {16, 19}, {121, 122}, {1, 4}, {147, 150}, {3, 6}, {155, 157}, {2, 5}, {185, 190}, {168, 175}, {72, 79}, {35, 36}, {2, 10}, {54, 62}, {50, 58}, {7, 15}, {6, 14}, {5, 13}, {4, 12}, {3, 11}, {3, 10}, {177, 184}, {52, 62}, {19, 24}, {49, 61}, {181, 185}, {99, 111}, {80, 93}, {179, 190}, {96, 109}, {50, 60}, {160, 174}, {51, 61}, {86, 88}, {102, 104}, {179, 188}, {160, 176}, {173, 189}, {43, 58}, {174, 191}, {106, 123}, {77, 95}, {110, 124}, {8, 27}, {171, 184}, {129, 146}, {170, 190}, {9, 28}, {8, 30}, {9, 31}, {99, 117}, {174, 185}, {8, 16}, {174, 182}, {9, 17}, {34, 59}, {168, 177}, {164, 189}, {42, 51}, {132, 157}, {6, 28}, {7, 29}, {41, 50}, {169, 178}, {102, 125}, {110, 117}, {42, 54}, {106, 118}, {143, 147}, {7, 26}, {4, 26}, {166, 184}, {64, 94}, {5, 27}, {33, 62}, {170, 181}, {43, 52}, {78, 81}, {110, 113}, {159, 191}, {145, 179}, {152, 188}, {17, 55}, {159, 185}, {151, 177}, {150, 176}, {146, 180}, {130, 164}, {131, 165}, {23, 48}, {149, 178}, {31, 55}, {147, 187}, {91, 115}, {94, 118}, {64, 105}, {11, 32}, {15, 36}, {84, 127}, {129, 170}, {145, 186}, {83, 127}, {85, 121}, {12, 33}, {154, 183}, {14, 35}, {83, 126}, {84, 121}, {13, 34}, {155, 180}, {153, 182}, {130, 178}, {154, 170}, {154, 168}, {67, 112}, {70, 114}, {16, 37}, {24, 45}, {18, 39}, {77, 120}, {71, 113}, {128, 182}, {129, 183}, {139, 189}, {17, 38}, {149, 162}, {25, 46}, {82, 106}, {135, 191}, {140, 180}, {65, 123}, {71, 125}, {19, 40}, {73, 114}, {23, 44}, {76, 119}, {87, 107}, {151, 171}, {134, 186}, {20, 41}, {75, 118}, {22, 43}, {146, 172}, {15, 48}, {67, 124}, {21, 42}, {81, 110}, {135, 184}, {29, 93}, {63, 125}, {46, 105}, {52, 115}, {136, 192}, {11, 66}, {13, 68}, {10, 65}, {39, 108}, {14, 69}, {40, 100}, {37, 107}, {44, 98}, {12, 67}, {31, 80}, {48, 96}, {60, 108}, {49, 97}, {19, 66}, {30, 79}, {21, 68}, {15, 93}, {51, 97}, {18, 65}, {29, 78}, {22, 69}, {24, 76}, {38, 114}, {25, 77}, {18, 71}, {46, 120}, {58, 108}, {17, 70}, {63, 104}, {53, 98}, {20, 67}, {60, 101}, {62, 103}, {39, 125}, {45, 119}, {44, 118}, {56, 99}, {61, 102}, {20, 72}, {23, 75}, {22, 74}, {21, 73}, {33, 124}, {63, 98}, {57, 100}, {25, 70}, {59, 100}, {160, 192}, {21, 116}, {57, 88}, {36, 69}, {7, 97}, {52, 82}, {12, 107}, {37, 66}, {1, 105}, {53, 92}, {28, 112}, {31, 115}, {37, 85}, {58, 74}, {47, 95}, {46, 94}, {45, 93}, {44, 92}, {43, 91}, {42, 90}, {41, 89}, {40, 88}, {39, 87}, {38, 86}, {26, 107}, {34, 83}, {32, 81}, {30, 111}, {33, 82}, {63, 76}, {182, 192}, {35, 84}, {53, 73}, {57, 69}, {14, 112}, {16, 111}, {59, 68}, {54, 73}, {5, 132}, {1, 131}, {41, 175}, {25, 145}, {20, 158}, {40, 163}, {59, 176}, {32, 172}, {10, 132}, {78, 192}, {55, 164}, {29, 136}, {30, 137}, {49, 166}, {28, 135}, {57, 165}, {27, 134}, {18, 141}, {54, 169}, {26, 133}, {23, 183}, {47, 143}, {36, 134}, {45, 142}, {56, 155}, {3, 167}, {6, 162}, {13, 171}, {56, 144}, {11, 162}, {34, 139}, {32, 138}, {47, 133}, {38, 141}, {60, 145}, {35, 140}, {61, 146}, {27, 171}, {4, 181}, {8, 186}, {22, 165}, {56, 140}, {9, 191}, {49, 135}, {48, 134}, {2, 181}, {50, 136}, {51, 137}, {24, 163}, {47, 148}, {55, 139}, {53, 138}, {92, 156}, {72, 137}, {77, 143}, {89, 155}, {95, 157}, {78, 138}, {100, 160}, {103, 163}, {81, 151}, {101, 162}, {92, 148}, {115, 187}, {119, 190}, {82, 152}, {109, 167}, {119, 188}, {122, 177}, {85, 153}, {86, 154}, {104, 164}, {105, 165}, {106, 166}, {84, 153}, {96, 173}, {108, 161}, {64, 142}, {103, 169}, {64, 144}, {109, 189}, {89, 136}, {121, 168}, {124, 173}, {76, 158}, {102, 180}, {90, 137}, {122, 169}, {71, 147}, {88, 141}, {116, 161}, {74, 156}, {101, 179}, {96, 183}, {101, 178}, {117, 173}, {79, 150}, {90, 128}, {91, 129}, {89, 132}, {74, 148}, {75, 149}, {80, 142}, {120, 153}, {123, 152}, {97, 133}, {116, 144}, {68, 161}, {117, 144}, {65, 167}, {113, 151}, {72, 175}, {127, 152}, {126, 148}, {80, 187}, {104, 131}, {109, 128}, {66, 172}, {112, 158}, {83, 188}, {111, 156}, {127, 140}, {79, 187}, {126, 139}, {87, 161}, {123, 141}, {91, 172}, {94, 166}, {114, 138}, {120, 128}, {122, 130}, {86, 175}, {103, 157}, {116, 142}, {75, 176}, {126, 133}, {70, 186}, {95, 163}, {98, 158}, {99, 159}, {90, 167}, {113, 143} }>;

(II) A more general form is to represent the graph as the orbit of {130, 131} under the group generated by the following permutations:

a: (2, 4)(3, 67)(5, 26)(6, 112)(7, 27)(8, 29)(10, 12)(11, 20)(13, 133)(15, 134)(16, 136)(17, 31)(18, 62)(19, 50)(21, 143)(22, 57)(24, 60)(25, 142)(30, 78)(32, 72)(33, 65)(34, 126)(37, 89)(38, 115)(39, 103)(40, 58)(41, 66)(42, 113)(43, 88)(44, 75)(45, 145)(46, 64)(47, 68)(49, 184)(51, 151)(52, 141)(53, 150)(54, 71)(56, 153)(59, 148)(61, 177)(63, 178)(70, 80)(73, 147)(74, 100)(76, 101)(77, 116)(79, 138)(81, 137)(82, 123)(84, 140)(85, 155)(86, 91)(87, 157)(90, 110)(92, 176)(93, 186)(95, 161)(97, 171)(98, 149)(99, 182)(102, 122)(104, 130)(107, 132)(108, 163)(109, 173)(111, 192)(114, 187)(117, 128)(119, 179)(120, 144)(121, 180)(124, 167)(125, 169)(129, 154)(146, 168)(156, 160)(158, 162)(159, 174)(172, 175)
b: (1, 2, 10, 3, 11, 32, 138, 53, 92, 148, 126, 83, 127, 84, 121, 168, 175, 72, 79, 187, 80, 142, 64, 105)(4, 5, 65, 6, 66, 81, 114, 98, 156, 47, 139, 188, 140, 153, 122, 154, 41, 137, 150, 115, 93, 116, 94, 165)(7, 68, 106, 69, 107, 171, 141, 112, 16, 113, 17, 76, 99, 77, 164, 190, 155, 128, 178, 129, 136, 42, 75, 43)(8, 71, 9, 24, 117, 25, 104, 185, 157, 109, 101, 146, 192, 54, 23, 58, 97, 59, 82, 36, 87, 184, 88, 67)(12, 27, 18, 28, 19, 110, 70, 63, 159, 95, 189, 179, 180, 182, 169, 183, 50, 51, 176, 52, 15, 161, 166, 57)(13, 123, 14, 37, 151, 38, 158, 111, 143, 55, 119, 56, 120, 130, 170, 89, 90, 149, 91, 29, 21, 118, 22, 26)(20, 30, 147, 31, 45, 144, 46, 131, 181, 132, 167, 162, 172, 78, 73, 44, 74, 133, 34, 152, 35, 85, 177, 86)(33, 134, 39, 135, 40, 124, 186, 125, 191, 163, 173, 145, 102, 174, 103, 96, 60, 61, 160, 62, 48, 108, 49, 100)
c: (3, 27)(5, 10)(6, 134)(7, 67)(8, 11)(9, 23)(12, 26)(13, 65)(14, 36)(15, 112)(16, 66)(17, 75)(18, 68)(20, 29)(21, 71)(25, 178)(28, 48)(30, 32)(31, 44)(33, 133)(34, 123)(38, 176)(39, 161)(41, 136)(42, 113)(43, 74)(45, 76)(46, 130)(47, 62)(49, 173)(51, 110)(52, 148)(53, 187)(54, 143)(55, 118)(56, 180)(59, 141)(61, 117)(63, 142)(64, 104)(70, 149)(72, 78)(73, 147)(77, 169)(79, 138)(80, 98)(81, 137)(82, 126)(83, 152)(86, 160)(88, 100)(90, 151)(91, 156)(92, 115)(93, 158)(94, 164)(95, 103)(96, 135)(97, 124)(99, 146)(101, 145)(102, 144)(105, 131)(106, 139)(109, 184)(111, 172)(114, 150)(116, 125)(120, 122)(121, 153)(128, 177)(129, 159)(154, 174)(162, 186)(166, 189)(167, 171)(168, 182)(170, 185)(175, 192)(183, 191)
d: (2, 105)(3, 142)(4, 131)(5, 46)(6, 45)(7, 178)(8, 70)(9, 19)(10, 64)(11, 80)(12, 104)(13, 120)(14, 119)(15, 101)(16, 17)(18, 117)(20, 98)(21, 90)(22, 170)(23, 50)(24, 28)(25, 27)(26, 130)(29, 149)(30, 114)(31, 66)(32, 187)(33, 102)(34, 153)(35, 188)(36, 179)(37, 55)(38, 111)(39, 173)(40, 191)(41, 44)(43, 129)(47, 177)(48, 60)(49, 103)(51, 54)(52, 146)(53, 72)(56, 123)(57, 185)(58, 183)(59, 182)(61, 62)(63, 67)(65, 144)(68, 128)(69, 190)(71, 110)(73, 137)(74, 154)(75, 136)(76, 112)(77, 171)(78, 150)(79, 138)(81, 147)(82, 180)(83, 84)(85, 139)(86, 156)(87, 189)(88, 159)(89, 118)(92, 175)(93, 162)(94, 132)(95, 184)(96, 108)(97, 169)(99, 141)(100, 174)(106, 155)(107, 164)(109, 161)(115, 172)(116, 167)(121, 126)(122, 133)(124, 125)(134, 145)(135, 163)(140, 152)(143, 151)(148, 168)(157, 166)(165, 181)(176, 192)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 192, 107 ]
192
-1 2 4 105 131
-2 1 5 181 10
-3 11 167 6 10
-4 1 12 26 181
-5 132 2 13 27
-6 3 14 28 162
-7 15 26 29 97
-8 16 27 30 186
-9 191 17 28 31
-10 132 2 3 65
-11 66 3 162 32
-12 33 67 4 107
-13 34 68 5 171
-14 35 112 69 6
-15 36 48 93 7
-16 111 37 8 19
-17 55 70 38 9
-18 71 39 141 65
-19 66 24 16 40
-20 67 158 72 41
-21 68 116 73 42
-22 165 69 74 43
-23 44 48 183 75
-24 45 19 163 76
-25 77 46 145 70
-26 133 4 7 107
-27 134 5 171 8
-28 112 135 6 9
-29 78 136 93 7
-30 111 79 137 8
-31 55 80 115 9
-32 11 81 138 172
-33 12 124 82 62
-34 13 59 83 139
-35 14 36 84 140
-36 35 134 69 15
-37 66 16 85 107
-38 114 17 86 141
-39 125 18 108 87
-40 88 100 19 163
-41 89 50 20 175
-42 90 51 21 54
-43 22 58 91 52
-44 23 92 118 98
-45 24 93 119 142
-46 25 94 105 120
-47 143 133 148 95
-48 23 134 15 96
-49 166 135 61 97
-50 58 136 60 41
-51 137 61 42 97
-52 82 115 62 43
-53 92 138 73 98
-54 169 62 73 42
-55 17 139 31 164
-56 99 144 155 140
-57 88 165 100 69
-58 50 74 108 43
-59 176 34 100 68
-60 101 145 50 108
-61 102 146 49 51
-62 33 103 52 54
-63 125 104 76 98
-64 144 94 105 142
-65 123 167 18 10
-66 11 37 172 19
-67 12 112 124 20
-68 13 59 161 21
-69 22 57 14 36
-70 25 114 17 186
-71 113 125 147 18
-72 79 137 20 175
-73 114 53 21 54
-74 22 156 58 148
-75 176 23 149 118
-76 24 158 63 119
-77 143 25 95 120
-78 81 192 138 29
-79 187 72 150 30
-80 187 93 31 142
-81 110 78 151 32
-82 33 106 52 152
-83 34 188 126 127
-84 121 35 127 153
-85 121 37 87 153
-86 88 154 38 175
-87 39 161 85 107
-88 57 40 86 141
-89 132 155 136 41
-90 167 137 128 42
-91 115 172 129 43
-92 44 156 148 53
-93 45 80 15 29
-94 166 46 118 64
-95 77 47 157 163
-96 48 183 173 109
-97 133 49 7 51
-98 44 158 63 53
-99 56 111 159 117
-100 57 59 160 40
-101 178 179 60 162
-102 125 180 104 61
-103 157 169 62 163
-104 102 63 131 164
-105 165 1 46 64
-106 166 123 82 118
-107 12 26 37 87
-108 58 60 39 161
-109 167 189 128 96
-110 113 124 81 117
-111 99 156 16 30
-112 67 14 158 28
-113 110 143 71 151
-114 70 38 138 73
-115 187 91 52 31
-116 144 161 21 142
-117 99 110 144 173
-118 44 94 106 75
-119 45 188 190 76
-120 77 46 128 153
-121 122 168 84 85
-122 121 177 169 130
-123 106 141 152 65
-124 33 110 67 173
-125 102 71 39 63
-126 133 148 83 139
-127 83 84 140 152
-128 90 182 109 120
-129 91 146 170 183
-130 122 178 131 164
-131 165 1 104 130
-132 89 157 5 10
-133 47 26 126 97
-134 36 48 27 186
-135 191 49 28 184
-136 89 192 50 29
-137 90 72 51 30
-138 78 114 53 32
-139 55 34 189 126
-140 56 35 180 127
-141 88 123 38 18
-142 45 80 116 64
-143 77 47 113 147
-144 56 116 117 64
-145 25 179 60 186
-146 180 61 172 129
-147 143 187 71 150
-148 47 92 126 74
-149 178 150 162 75
-150 176 79 147 149
-151 177 113 81 171
-152 188 123 82 127
-153 182 84 85 120
-154 168 170 183 86
-155 56 89 157 180
-156 111 92 159 74
-157 132 155 103 95
-158 112 20 76 98
-159 99 156 191 185
-160 176 100 192 174
-161 68 116 108 87
-162 11 101 6 149
-163 24 103 40 95
-164 55 189 104 130
-165 22 57 105 131
-166 49 94 106 184
-167 90 3 65 109
-168 121 154 177 175
-169 122 178 103 54
-170 154 190 181 129
-171 13 27 151 184
-172 66 91 146 32
-173 189 124 117 96
-174 191 160 182 185
-175 168 72 41 86
-176 59 160 150 75
-177 122 168 151 184
-178 101 169 149 130
-179 188 101 145 190
-180 155 102 146 140
-181 2 4 170 185
-182 192 128 174 153
-183 154 23 96 129
-184 166 177 135 171
-185 190 159 181 174
-186 134 145 70 8
-187 79 80 147 115
-188 179 83 119 152
-189 139 173 109 164
-190 179 170 119 185
-191 135 159 9 174
-192 78 136 160 182
0

**************